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Abstract—The problem of forecasting the real-time locational
marginal price (LMP) by a system operator is considered. A
new probabilistic forecasting framework is developed based on
a time in-homogeneous Markov chain representation of the real-
time LMP calculation. By incorporating real-time measurements
and forecasts, the proposed forecasting algorithm generates the
posterior probability distribution of future locational marginal
prices with forecast horizons of 6-8 hours. Such a short-term
forecast provides actionable information for market participants
and system operators. A Monte Carlo technique is used to
estimate the posterior transition probabilities of the Markov
chain, and the real-time LMP forecast is computed by the product
of the estimated transition matrices. The proposed forecasting
algorithm is tested on the PJM 5-bus system. Simulations show
marked improvements over benchmark techniques.

Index Terms—Locational marginal price (LMP), electricity
price forecasting, probabilistic forecasting, Monte Carlo tech-
niques, Incremental optimal power flow.

I. INTRODUCTION

The problem of forecasting locational marginal price (LMP)

in a deregulated electricity market is important to both system

operators and market participants. Accurate LMP forecast

produced in real-time are essential for demand response,

revenue and risk management, and an efficient operation of a

smart grid. To this end, probabilistic forecast techniques that

provide the posterior distribution of the future prices are most

desirable.

The forecast of electricity price is challenging. Typically,

only day-ahead price forecasts are produced using historical

data; probabilistic forecasts are not available in general. Ap-

plying conventional techniques such as artificial neural net-

works (ANNs) or support vector machines (SVMs) to forecast

the day-ahead (and in real time) LMP typically generates the

mean absolute prediction error (MAPE) around around 10-

20% [1]. Such inaccuracy is inadequate for making critical

operation decisions. As a comparison, when these techniques

are applied to load forecast, the MAPEs are almost an order

of magnitude lower at approximately 1-2%.

The main challenge of price forecast arises from the fact

that the price of electricity is location dependent, and the

determination of LMP involves the optimization of the power

flow subject to various generation and transmission constraints.

As a result, LMP can be highly volatile with seemingly

unpredictable price spikes.
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Recently, the problem of real-time LMP forecast has been

considered by major system operators, motivated by the fact

that short-term forecasts of the real-time LMP are potentially

beneficial to large consumers for making effective demand

response decisions. Such forecasts can also play an important

role in congestion relief, thus reducing the overall system

operating cost. An example of such an operator provided real-

time price forecast is that by the Electric Reliability Council

of Texas (ERCOT) [2]. Specifically, ERCOT provides the one-

hour ahead real-time forecasting of electricity prices with five-

minute interval updates.

The system operator has access to a wealth of informa-

tion critical to determining LMPs in real-time. This includes

forecasts of loads and generators, line conditions, and most

importantly, real-time state estimates that are used in the LMP

calculation. Thus a significant improvement of forecasting

accuracy can potentially be realized. Unfortunately, there has

not been a formal development of forecasting methodologies

that take advantage such inside information.

A. Summary of Contributions

The main contribution of this paper is a first attempt to

develop a formal LMP forecasting methodology used by a

system operator with the goal of facilitating actionable infor-

mation for the system operator and market participants. To this

end, we adopt a probabilistic forecasting framework aimed

at providing the posterior distribution of future LMPs over

prediction horizons up to 6-8 hours. Such prediction horizons

are sufficiently ahead for making operating decisions and

sufficiently short to take advantage of real-time measurements

and forecasts available internally at the operator’s energy

management system.

The key of any forecast technique is a model that captures

dependencies of future variables on available information.

To this end, we propose a time in-homogeneous Markov

chain model for the LMP calculation, which is derived based

on a stylized implementation of the PJM real-time market

operation [3]. In particular, we define the LMP state as the (ex-

ante) congestion pattern and (ex-post) eligible generators. By

modeling the LMP states as a time in-homogeneous Markov

chain, the dependencies of future LMP states (thus future

LMPs) on current system operating conditions are captured

by a sequence of transition probabilities that can be estimated

using Monte Carlo techniques and, in practice, updated using

real-time measurements.



The use of Markov chain is crucial in providing probabilistic

forecasts. While real-time LMPs, strictly speaking, are not

Markovian, the LMP state is Markovian under certain ide-

alistic conditions. In our simulation, the Markov model seems

to be sufficiently accurate to provide substantial improvement

of forecast accuracy.

B. Related Work

Electricity price forecasting has been a long standing and

challenging problem. A variety of forecasting techniques have

been considered, including the applications of time series

models, machine learning algorithms, simulation tools, and

game theory strategies (refer to [1] and the reference therein).

The main difference between existing approaches and that

presented here is twofold. First, we consider the LMP forecast

problem from the perspective of an operator. This allows us to

exploit an explicit connection between the real-time LMP and

the power system state space. Specifically, it is shown in [4]

that the real-time LMP calculation partitions the power system

state space into price regions. The system operating point can

be seen as a random walk driven by demands and supplies.

When the operating point passes across boundaries of these

price regions, the real-time LMP transits from one price to

another. This geometric characterization of the real-time LMP

has led to the Markov chain model for the LMP calculation.

We note that the use of Markov chain for the short-term price

forecasting has been considered by Halilcevic and Gubina [5]

in a very different setting.

Second, our method falls in the category of probabilistic

forecasting, i.e., it provides an estimate of the posterior price

distribution in addition to the point price forecast. Most exist-

ing works on probabilistic price forecasting focus on provid-

ing prediction intervals [6]–[8]. Although prediction intervals

indicate the accuracy of price forecasts, price distributions

are much more useful for planning purposes. A probabilistic

forecasting method for the day-ahead LMP is proposed in

[9], which estimates the future price distribution based on

the forecasted load distribution. However, it is not directly

applicable to the real-time LMP forecasting because the real-

time LMP depends not only on the load profile but also on

the system state trajectory.

II. REAL-TIME LMP MODEL

The PJM ex-post real-time LMP model [3] is adopted in

this paper. As illustrated in Fig. 1, the model consists of

four main components: State Estimation, Security Constrained

Economic Dispatch, LMP Preprocessor, and LMP Algorithm.

In the following, we describe the key role of each component

and the real-time LMP calculation process.

1) State Estimation: The state estimator uses real-time

measurements to infer the current power system operating

condition. Specifically, the state estimator receives the accurate

model of power grid and the real-time meter measurement zt
as inputs and calculates the estimate x̂t of current system state

xt, which is defined as the vector of bus voltage magnitudes

and phase angles at time t.
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Fig. 1. Functional diagram of ex-post real time LMP model

2) Security Constrained Economic Dispatch (SCED): Given

the resulting state estimate x̂t from the state estimator, SCED

also receives the load forecast d̂t+1|t for the next five-minute

interval, and the list of online available generators with the full

set of offer data from the system operator. With these inputs,

SCED solves a DC optimal power flow (OPF) problem to

find an optimal economic generation adjustment that meets the

demand forecast d̂t+1|t and satisfies generation, transmission,

and ramping constraints.

In the context of the real-time LMP calculation, SCED

produces two important outputs: the ex-ante dispatch signal

gt+1|t, which is the optimal generation level of all generators

for the next five-minute interval (i.e., the solution of the DC

OPF), and the predicted congestion pattern Ct+1|t, which is

the set of congested lines during the next five-minute interval

when all generators follow the dispatch instruction.

3) LMP Preprocessor (LMPP): The role of LMPP is to

determine the set of generators that are eligible to participate

the real-time LMP calculation after the delivery of energy at

time t+1, denoted by Gt+1. Generators are considered eligible

if and only if they are marginal generators in the ex-ante

dispatch signal gt+1|t and follow the instruction during the

last five-minute interval. The criterion of eligibility is that the

ex-post estimated generation ĝt+1, which is computed based

on the state estimate x̂t+1 at time t+1, does not exceed 110%
of the ex-ante dispatch gt+1|t. Such a criterion is intended to

reward the generator that follows the dispatch signal in the

sense that the eligible generator is paid at actual output level

while the ineligible generator is only paid the portion in the

ex-ante dispatch.

4) LMP Algorithm (LMPA): LMPA is the last component

of the real-time LMP calculation process. Given the set of

eligible generators Gt+1 from LMPP and the ex-ante conges-

tion pattern Ct+1|t from SCED, LMPA solves the following

incremental DC OPF:



minimize
∑

i∈Gt+1
ci∆gi

subjcet to
∑

i∆gi = 0, (λ)
∆gmin ≤ ∆gi ≤ ∆gmax, i ∈ Gt+1∑

i∈Gt+1
Aik∆gi ≤ 0, k ∈ Ct+1|t (µk)

(1)

where

∆gi change in power output for generator i;

ci real-time offer for generator i;

∆gmax upper bound of change for generator i;

∆gmin lower bound of change for generator i;

Aik matrix of shift factors for generation bus i on the

binding transmission constraint k;

λ Lagrange multiplier of the power balance constr-

aint;

µk Lagrange multiplier of transmission constraint k.

It should be noted that variables of (1) are hypothetical

adjustments of eligible generators since this ex-post pricing

happens after the delivery of energy. The Lagrange multiplier

of the power balance constraint in (1) gives the marginal

energy price λ for generation at the reference bus and that

of each congestion constraint corresponds to the shadow price

µk for each congested line k ∈ Ct+1|t. Based on the envelop

theorem, the real-time LMP at a bus i is defined as the sum of

the marginal energy price and shadow prices associated with

all congested lines1:

πt+1(i) , λ+
∑

k∈Ct+1|t

Aikµk. (2)

Therefore, the real-time LMP vector πt+1 can be written as

πt+1 = λ · 1+Aµ, (3)

where 1 is the vector of ones, and µ is the vector of all shadow

prices associated with the lines in Ct+1|t.

III. REAL-TIME LMP FORECAST ALGORITHM

In this section, we first introduce the real-time LMP state

and model the LMP state process as a discrete Markov chain.

Then, we present the forecasting algorithm based on the

Markov model, the LMP pricing mechanism, and a Monte

Carlo method.

A. Real-time LMP state and Markov chain model

According to (1), the LMP πt at time t is fully determined

by two real-time inputs2: the set of eligible generators Gt and

the set of ex-ante congested lines Ct|t−1.

We define the pair St , (Gt, Ct|t−1) as the real-time LMP

state at time t. By inherent discreteness of eligible generators

and congestion patterns, the LMP state is also discrete. The

collection of all possible pairs of an eligible generator set and

a congestion pattern forms the LMP state space, denote as Ω.

1In this paper, we ignore losses and hence the cost of marginal loss in LMP
is set to zero.

2We assume that the system topology, generation adjustment bounds and
the cost are fixed in the five-minute interval.

In our approach, we predict the real-time LMP πt via

forecasting the state St. There are important advantages of

working with St rather than πt: the correlation of St across

time can be well estimated with the help of load forecast,

the knowledge of previous system operating conditions, and

network parameters. In contrast, the correlation structure of

price series is generally arbitrary and much harder to estimate.

With the concept of LMP states, modeling the real-time

LMP state process (St) as a discrete Markov chain becomes

natural. The Markov chain model is reasonable because eligi-

ble generators and congestion pattern at time t tend to depend

on their recent values. In particular, we model (St : t =
0, · · · , T ), where T is the prediction horizon, as a first-order

time in-homogeneous Markov chain. The time in-homogeneity

is meant to reflect the fact that the state transition depends on

time-varying exogeneous variables (e.g., load profiles, system

operating conditions). Our approach can be generalized for a

higher-order Markov chain. The use of a first-order model is

purely motivated by the computational benefit. The Markov

chain is defined by following elements:

• the state space: Ω;

• the initial state probability (at time 0): δs0 ∈ R
|Ω|;

• the set of transition probability matrices:

Q , {Qt,t+1, t = 0, . . . , T − 1}, (4)

where T is the prediction horizon, and

Qt,t+1(i, j) = Pr(St+1 = j|St = i). (5)

At time 0, our forecasting algorithm begins by observing the

realization s0 of S0, and thus the initial state probability is set

as δs0 with the probability mass function δs0(s0) = 1.

B. Real-time LMP Forecasting Algorithm

In order to forecast the future LMP distribution, it is

necessary to estimate transition matrices of the Markov model.

We employ a Monte Carlo method to infer transition matrices

for each time interval in the prediction horizon.

1) Stochastic model for sample path generation: The first

step of the Monte Carlo method is to define a stochastic model

to generate multiple sample paths of the Markov chain. Given

a power system, generation and transmission constraints, and

the real-time LMP model, we only need to generate an actual

load profile and its forecast. All other sample paths can be

computed by injecting the generated load data into the LMP

model.

We use a first order auto-regressive noise model and a given

load profile to generate sample paths of the actual load profile

and the five-minute ahead load forecast. Specifically, at each

time t > 1, the actual load dt, and the five-minute ahead load

forecast d̂t+1|t are generated from the following model:

yt = θyt−1 + ǫt, θ ∈ (0, 1), ǫt ∼ N (0, σ2)
dt = d̄t + yt,

d̂t+1|t = d̄t+1 + θyt.

(6)



This model is based on a given load profile (d̄t : t = 0, · · · , T )
which is considered as the mean value of the actual load pro-

file. In practice, we can use the day-ahead load forecast. The

actual load profile is generated by adding the mean value with

a first order auto-regressive noise series (yt : t = 0, · · · , T ).
The initial values of d0 and y0 are defined as: d0 , d̄0 + ǫ0
and y0 , ǫ0. The five-minute ahead load forecast d̂t+1|t to be

used by SCED is generated from d̄t+1 and the estimated noise

ŷt+1 = θyt.

Given a load sample path (dt : t = 0, · · · , T ) and its up-

to-date forecast (d̂t+1|t)
T−1
t=0 , the corresponding sample paths

of actual power system (xt : t = 0, · · · , T ), ex-ante power

system state (xt+1|t : t = 0, · · · , T − 1) and ex-post state

estimate (x̂t : t = 0, · · · , T ) can be generated as follows.

For each time t, we simulate market operations and energy

deliveries by using the actual load dt to solve the DC OPF. The

optimization result is treated as the actual power system state

xt. To model the measurement zt = xt + εt, we use Gaussian

model εt ∼ N (0, σ2
z) as the measurement noise. Given the

measurement zt, the sample path of the state estimate x̂t is

simply by applying the traditional state estimation3. With these

two sample paths, the ex-ante state xt+1|t is generated by

SCED which uses the estimated current state condition x̂t as

the starting point and finds the optimal dispatch to meet the

five-minute ahead load forecast d̂t+1|t subject to constraints

of generation, transmission and ramping.

Once (xt+1|t : t = 0, · · · , T − 1) and (x̂t : t = 0, · · · , T )
are available, generating sample paths of the LMP state is

trivial. The sample path of (Ct+1|t : t = 0, · · · , T − 1) is

determined by the ex-ante dispatch which can be obtained

from (xt+1|t : t = 0, · · · , T − 1), while the sample path

of eligible generators4 (Gt : t = 0, · · · , T ) is generated by

comparing the difference between the ex-ante dispatch and

the ex-post generation estimate based on (x̂t : t = 0, · · · , T ).
These two sample paths form a sample path of the price state

(St : t = 0, · · · , T ).
The forecasting algorithm repeats the above steps N times

(Monte Carlo runs) to collect N sample paths of (St : t =
0, · · · , T ).

2) State transition matrix estimation and probabilistic fore-

casting: Given all N sample paths of (St : t = 0, · · · , T ),
we can redefine Ω as the set of real-time LMP states that ever

appear in any of sample paths at any time. This step reduces

the cardinality of Ω significantly because there are only a

few lines that are likely to congested. With the price state

space and all sample paths, we can obtain estimates of state

transition probability matrices, {Q̂t,t+1 : t = 0, . . . , T − 1}.

Given estimates of state transition matrices, the probability

mass function PT of πT is given by

PT = δs0 · Q̂0,1 · Q̂1,2 · · · Q̂T−1,T . (7)

3The traditional state estimation (which estimates the system state only
based on the measurement and underlying mathematical equtions) should not
be confused with the state estimation module in the real-time LMP model.

4Initial eligible generators G0 are assumed to be the marginal generators
at time 0 in the actual system state x0.
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Fig. 2. PJM 5-bus system

IV. NUMERICAL RESULTS

We present some simulation results on the modified PJM

5-bus system illustrated in Fig. 2 to compare the proposed

forecasting algorithm with benchmark techniques.

A. Simulation system settings

1) System configuration: As shown in Fig. 2, generation

capacities and their marginal costs (assumed to be constant)

are posted in the box beside each generator. Line 1-2 and

line 4-5 are assumed to have limits, which are 400MW and

240MW, respectively. Other detailed system parameters can

be found in [10].

2) Data: We use ISO New England [11] historical five-

minute load profile data from three independent days as the

mean value of 24-hour load profiles on bus 2, 3 and 4,

respectively. To make the load profile feasible in the system,

we re-scale them into range [250MW, 400MW]. We only show

results of the most representative case where the load base

is [325MW, 375MW] in the following. As short term load

prediction algorithms with mean absolute percentage value

(MAPE) below 3% available [12], we set AR parameters θ and

σ to achieve a reasonable load prediction error level (0.56%
in MAPE for the one-hour ahead forecast).

3) Toolbox: MATPOWER [13] is used to solve ex-ante

dispatch and incremental DC-OPF problems in the simulation.

B. Probabilistic price forecasting and benchmarks

We implement the proposed probabilistic LMP forecasting

algorithm described in Section III with 6 hours ahead predic-

tion horizon. Since the forecasting performance is dependent

on locations, we provide detailed prediction results for each

bus. To evaluate the performance of the proposed algorithm,

we use the following two point price predictions at a specific

bus i:

• Maximum a posteriori probability (MAP) prediction:

π̂MAP(i) = πk(i),

where k = argmax
1≤k≤|Ω|

P k
T .

• Minimum Absolute Error (MAE) prediction:

π̂MAE(i) = πk(i),

where k = argmin
1≤k≤|Ω|

E|π(i)− πk(i)|,



TABLE I
RESULTS OF DIFFERENT PRICE FORECASTING ALGORITHMS

Algorithm π̂
D

π̂
MAP

π̂
MAE

π̂
NN

Bus1 24.50 22.97 16.30 33.69

Bus2 6.42 6.68 8.87 8.21

Bus3 3.19 3.68 5.06 2.51

Bus4 24.80 23.15 17.67 37.43

Bus5 14.12 14.77 10.88 21.31

Average 14.61 14.25 11.75 20.63

assuming that Ω = {π1, . . . , π|Ω|} is the reduced price state

space which is defined in Section III-B2.

A deterministic baseline benchmark is implemented on the

base of the real-time LMP model without Markov chain con-

struction in the prediction horizon. In particular, this approach

uses the deterministic mean value of load profile as the one-

step ahead load prediction, i.e., d̂t+1|t = d̄t+1 to compute the

price trajectory as the LMP forecast.

ANN is implemented as a representative benchmark of the

state-of-the-art technique to be compared with the proposed

forecasting algorithm and the basic deterministic prediction

approach. The architecture of the neural network consists of

an input layer, two hidden layers and an output layer. We

train a separate neural network at each bus using all available

historical data in the past 6 hours at this particular bus. For

example, input data for training on bus 1 include generation

profiles of both generators, and the LMP trajectory; input data

on bus 2 include the historical load and price profiles.

C. Simulation results

The measurement of forecasting accuracy at bus i is accom-

plished by MAPE:

MAPE =
E|π̂(i)− π(i)|

E|π(i)|

As shown in the TABLE. I, π̂MAE has the best performance

on average while π̂NN is the worst. However, the result is

opposite at some specific location, e.g., bus 3, because the

price is the location dependent. Such differences lead to the

gap of MAPEs between different buses which is primarily due

to the presence of price spikes. Since ANN is a data driven

technique, it is very sensitive to unpredictable price spikes.

With the knowledge of the pricing mechanism, on the other

hand, the proposed algorithm is capable of predicting price

spikes to some extent and hence the accuracy is considerably

improved.

V. CONCLUSION

In this paper, we presented a novel probabilistic real-time

LMP forecasting algorithm that exploits the knowledge of

the pricing mechanism. With the comprehensive study of the

PJM ex-post real-time pricing model, we provided insights of

the discrete price state abstraction. Such a discrete concept

motivated the modeling of the real-time price as a time in-

homogeneous Markov chain. We used a Monte Carlo method

to estimate price state transition probability matrices, based on

which the distribution of a future price can be computed. The

simulation results demonstrated that the proposed forecasting

algorithm outperforms the well accepted ANN technique.

Despite its superior performance, the proposed approach

suffers from the computational burden imposed by the Monte

Carlo estimation of price transition probability matrices.

Therefore, a more efficient and scalable computation method

is desired. Incorporating a generator behavior model and the

possibility of contingency events is also an interesting research

direction that may improve the proposed approach.
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