MATPOWER’s Extensible Optimal Power Flow Architecture

Ray Zimmerman, Cornell University
Carlos Murillo-Sánchez, Universidad Autonoma de Manizales
Robert J. Thomas, Cornell University

IEEE PES General Meeting 2009
July 30, 2009
Calgary, Alberta, Canada
Outline

- **MATPOWER Overview**
- Extensible OPF Formulation
- Standard Extensions
- Software Architecture
- Example: Adding Reserves
Outline

- **MATPOWER Overview**
 - What does MATPOWER do?
 - MATPOWER History
 - MATPOWER Package

- Extensible OPF Formulation

- Standard Extensions

- Software Architecture

- Example: Adding Reserves
What does MATPOWER do?

• DC power flow
• AC power flow
 ‣ Newton
 ‣ Gauss-Seidel
 ‣ Fast decoupled
• functions to compute ...
 ‣ derivatives of power flow equations
 ‣ generation costs
 ‣ linear shift factors (PTDFs, LODFs)

• DC optimal power flow (OPF)
 ‣ BPMPD (MEX)
 ‣ Primal-Dual Interior Point Method (PDIPM)

• AC optimal power flow (OPF)
 ‣ Primal-Dual Interior Point Method (PDIPM) (pure Matlab & MEX)
 ‣ MINOS (MEX)
 ‣ successive LP’s (BPMPD MEX)
 ‣ Optimization Toolbox (fmincon, constr)
MATPOWER History

1st work with Matlab power flow code for PowerWeb - based on code from Joe Chow & Chris DeMarco

1st PF and OPF code of my own - based on Opt Tbx, constr()

1st public MATPOWER release - not widely publicized - PWL costs

MATPOWER 1.0 - in-house successive LP-based OPF

MATPOWER 3.0 - MINOS-based OPF (gen. form.) - fmincon-based OPF - DC PF & OPF - multiple gens/bus - Gauss-Seidel PF - improved DP de-commitment - automated tests - separate disp. load output section - option for active power line lims - option to enforce Q_g lims in PF

MATPOWER 3.2 - version 2 case format - gen capability curves - branch angle diff lims - PTDFs - TSPOPF

MATPOWER 4.0 - refactored OPF (all using gen. form.) - pure-Matlab PDIPM solver - OPF with reserves - userfcn callbacks - multiple solvers for DC OPF - LODFs - support for interior point fmincon
MATPOWER Package

- Open source Matlab code available at: http://www.pserc.cornell.edu/matpower/
- No GUI (graphical user interface)
- Set of functions you can run from Matlab command line or include in your own programs

Example:

```matlab
>> result = runopf('case300');
```

or

```matlab
>> mpc = loadcase('case300');
>> mpc.bus = scale_load(1.1, mpc.bus);
>> result = runopf(mpc);
```

- Primary focus on research and education applications
Outline

• MATPOWER Overview

• Extensible OPF Formulation
 ‣ Standard Formulation
 ‣ Generalized Formulation
 ‣ User-Defined Costs
 ‣ User-Defined Constraints

• Standard Extensions

• Software Architecture

• Example: Adding Reserves
Standard OPF Formulation

\[\min_{x} f(x) \]

subject to

\[g(x) = 0 \]
\[h(x) \leq 0 \]
\[x_{\min} \leq x \leq x_{\max} \]
Standard OPF Formulation

\[
\min_{\Theta, V, P, Q} \sum_{i=1}^{n_g} \left[f_P^i(p_i) + f_Q^i(q_i) \right]
\]

subject to

\[
g_P(\Theta, V, P) = 0
\]
\[
g_Q(\Theta, V, Q) = 0
\]
\[
h_f(\Theta, V) \leq 0
\]
\[
h_t(\Theta, V) \leq 0
\]
\[
\theta_{\text{ref}} \leq \theta_i \leq \theta_{\text{ref}}, \quad \text{if } i = i_{\text{ref}}
\]
\[
v^\text{min}_i \leq v_i \leq v^\text{max}_i, \quad \text{if } i = 1 \ldots n_b
\]
\[
p^\text{min}_i \leq p_i \leq p^\text{max}_i, \quad \text{if } i = 1 \ldots n_g
\]
\[
q^\text{min}_i \leq q_i \leq q^\text{max}_i, \quad \text{if } i = 1 \ldots n_g
\]
Generalized Formulation

\[
\min_{x,z} f(x) + f_u(x, z)
\]

subject to

\[
g(x) = 0
\]
\[
h(x) \leq 0
\]
\[
x_{\text{min}} \leq x \leq x_{\text{max}}
\]
\[
l \leq A \begin{bmatrix} x \\ z \end{bmatrix} \leq u
\]
\[
z_{\text{min}} \leq z \leq z_{\text{max}}
\]
Generalized Formulation

\[
\begin{align*}
\min_{x,z} & \ f(x) + f_u(x, z) \\
\text{subject to} & \ g(x) = 0 \\
& \ h(x) \leq 0 \\
& \ x_{\min} \leq x \leq x_{\max} \\
& \ l \leq A \begin{bmatrix} x \\ z \end{bmatrix} \leq u \\
& \ z_{\min} \leq z \leq z_{\max}
\end{align*}
\]
Generalized Formulation

\[
\min_{x, z} f(x) + f_u(x, z)
\]

subject to

- \(g(x) = 0 \)
- \(h(x) \leq 0 \)
- \(x_{\text{min}} \leq x \leq x_{\text{max}} \)
- \(l \leq A \begin{bmatrix} x \\ z \end{bmatrix} \leq u \)
- \(z_{\text{min}} \leq z \leq z_{\text{max}} \)
Generalized Formulation

\[
\min_{x,z} f(x) + f_u(x, z)
\]

subject to

\[
\begin{align*}
g(x) &= 0 \\
h(x) &\leq 0 \\
x_{\text{min}} &\leq x \leq x_{\text{max}} \\
l &\leq A \begin{bmatrix} x \\ z \end{bmatrix} \leq u \\
z_{\text{min}} &\leq z \leq z_{\text{max}}
\end{align*}
\]

additional costs

additional constraints

additional variables
User-Defined Costs

\[f_u(x, z) = \frac{1}{2} w^T H w + C^T w \]

\[r = N \begin{bmatrix} x \\ z \end{bmatrix} \]

\[u = r - \hat{r} \]

\[w_i = \begin{cases} m_i f_{d_i}(u_i + k_i), & u_i < -k_i \\ 0, & -k_i \leq u_i \leq k_i \\ m_i f_{d_i}(u_i - k_i), & u_i > k_i \end{cases} \]

\[f_{d_i}(\alpha) = \begin{cases} \alpha, & \text{if } d_i = 1 \\ \alpha^2, & \text{if } d_i = 2 \end{cases} \]
User-Defined Constraints

- additional linear restrictions on all optimization variables

\[l \leq A \begin{bmatrix} x \\ z \end{bmatrix} \leq u \]

- inequality constraints

- equality constraints if \(l = u \)
Outline

• **MATPOWER Overview**

• Extensible OPF Formulation

• **Standard Extensions**
 ‣ piece-wise linear costs
 ‣ dispatchable (price sensitive) loads
 ‣ generator reactive capability constraints
 ‣ branch angle difference limits

• Software Architecture

• Example: Adding Reserves
Piece-wise Linear Generation Costs

\[c(x) = \begin{cases}
 m_1(x - x_1) + c_1, & x \leq x_1 \\
 m_2(x - x_2) + c_2, & x_1 < x \leq x_2 \\
 \vdots & \vdots \\
 m_n(x - x_n) + c_n, & x_{n-1} < x
\end{cases} \]

- given the sequence of points \((x_j, c_j), \ j = 0 \ldots n\)
- where \(m_j\) is the slope of segment \(j\)
 \[m_j = \frac{c_j - c_{j-1}}{x_j - x_{j-1}}, \ j = 1 \ldots n \]
- add a new variable \(y\) and, for each segment, a new linear constraint on \(y\)
 \[y \geq m_j(x - x_j) + c_j, \ j = 1 \ldots n \]
- use \(y\) in place of \(c(x)\) in the cost function
Dispatchable (price sensitive) Loads

- modeled as “negative generator”

\[p_1 \]

\[p_2 \]

\[\lambda_1 \] (marginal benefit)

\[\lambda_2 \]

\[\frac{\lambda_1}{p_1} \]

\[\frac{\lambda_2}{p_2} \]

\[c \] (total cost)

\[p \] (injection)

\[MW \]

\[$/MW \]

\[p \] (load)

- with an additional constant power factor constraint
Generator Reactive Capability Constraints

• Instead of simple box constraints ...
Generator Reactive Capability Constraints

- Instead of simple box constraints ...

![Diagram showing generator reactive capability constraints with variables p1, p2, q1, q2, p_min, p_max, q_max, and q_min.]
Outline

- **MATPOWER Overview**

- Extensible OPF Formulation

- Standard Extensions

- **Software Architecture**
 - Overview of Execution - Callbacks
 - Adding Variables
 - Adding Constraints

- Example: Adding Reserves
Overview of Execution

- load data
- convert to internal indexing
- set up problem formulation
- run optimization
- convert results back to external indexing
- print results (optional)
- save results (optional)
Overview of Execution – Callbacks

• load data

 • convert to internal indexing

 • set up problem formulation

• run optimization

 • convert results back to external indexing

• print results (optional)

• save results (optional)
Overview of Execution – Callbacks

- load data
- convert to internal indexing
- set up problem formulation
- run optimization
- convert results back to external indexing
- print results (optional)
- save results (optional)

Modifying the Formulation

- Option 1 – externally supply complete constraint matrix A, cost coeff matrix N, etc. *(taking into account internal conversions)*
- Option 2 – modify formulation directly in a callback function
Software Architecture - Variables

- Utilizes an “OPF-Model” object (OM) to manage variable and constraint indexing

- Variables are added in named blocks, with dimension, initial value and bounds, e.g.
 \[\text{om} = \text{add}_\text{vars} \left(\text{om}, \ 'Pg', \ ng, \ Pg0, \ P\text{min}, \ P\text{max} \right); \]

- Portions of optimization variable \(x \) or limit shadow prices can be accessed by name, w/o need to keep track of explicit indexing

<table>
<thead>
<tr>
<th>name</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Va</td>
<td>bus voltage angles</td>
</tr>
<tr>
<td>Vm</td>
<td>bus voltage magnitudes</td>
</tr>
<tr>
<td>Pg</td>
<td>generator real power injections</td>
</tr>
<tr>
<td>Qg</td>
<td>generator reactive power injections</td>
</tr>
<tr>
<td>y</td>
<td>CCV helper variables for pwl costs</td>
</tr>
<tr>
<td>z</td>
<td>other user defined variables</td>
</tr>
</tbody>
</table>

\[x = \]

\[\begin{align*}
 & \text{AC OPF} \\
 & \text{DC OPF} \\
 & \begin{align*}
 & \text{Va} \\
 & \text{Vm} \\
 & \text{Pg} \\
 & \text{Qg} \\
 & \text{y} \\
 & \text{z}
\end{align*}
\]
Constraints added in named blocks, with A, l, u and block column names, e.g.

\[
\text{om} = \text{add_constraints(om, 'Res', Ar, lr, ur, \{'Pg', 'R'\});}
\]

\[
l \leq A \begin{bmatrix} x \\ z \end{bmatrix} \leq u
\]

\[
l_r \leq A_r \begin{bmatrix} P^g \\ R \end{bmatrix} \leq u_r
\]

\[
l_r \leq \begin{bmatrix} A_1 & A_2 \end{bmatrix} \begin{bmatrix} P^g \\ R \end{bmatrix} \leq u_r
\]

• Constraint multipliers can be accessed by name (e.g., 'Res') w/o need to keep track of explicit indexing
Outline

• MATPOWER Overview

• Extensible OPF Formulation

• Standard Extensions

• Software Architecture

• Example: Adding Reserves
Example – Adding Reserves

• Jointly optimize the allocation of both energy and reserves

• Reserve requirements are set of fixed zonal quantities

• New reserve variable: \(0 \leq r_i \leq r_i^{\text{max}} \)

• Additional reserve cost: \(f_u(x, z) = \sum_{i \in U} c_i r_i \)

• Reserve constraints: \(p_i + r_i \leq p_i^{\text{max}}, \quad \forall i \in U \)
 \[\sum_{i \in Z_k} r_i \geq R_k, \quad \forall k \]
Adding Reserves – Code

<table>
<thead>
<tr>
<th>name</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>om</td>
<td>OPF model object, already includes standard OPF setup</td>
</tr>
<tr>
<td>ng</td>
<td>number of generators</td>
</tr>
<tr>
<td>R</td>
<td>name for new reserve variable vector</td>
</tr>
<tr>
<td>Rmin</td>
<td>lower bound on R, all zeros</td>
</tr>
<tr>
<td>Rmax</td>
<td>upper bound on R, based on ramp rates</td>
</tr>
<tr>
<td>Pmax</td>
<td>capacity of generators</td>
</tr>
<tr>
<td>I</td>
<td>identity matrix (ng x ng)</td>
</tr>
<tr>
<td>Az</td>
<td>zone definitions, Az(i, j) = 1, iff gen j lies in zone i</td>
</tr>
<tr>
<td>Rreq</td>
<td>vector of reserve requirements for each zone</td>
</tr>
<tr>
<td>Rcost</td>
<td>cost coefficients for R</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{Ar} &= [I \ I]; \\
\text{om} &= \text{add_vars}(\text{om}, \ 'R', \ ng, [], \ Rmin, \ Rmax); \\
\text{om} &= \text{add_constraints}(\text{om}, \ 'Pg_plus_R', \ Ar, [], \ Pmax, \ {'Pg', \ 'R'}); \\
\text{om} &= \text{add_constraints}(\text{om}, \ 'Rreq', \ Az, \ Rreq, [], \ {'R'}); \\
\text{om} &= \text{add_costs}(\text{om}, \ 'Rcost', \ \text{struct}(\ 'N', \ I, \ 'Cw', \ Rcost), \ {'R'}); \\
\end{align*}
\]
Goals & Applications

- Make it as simple as possible for students and researchers to solve problems that require variations of a power flow or OPF formulation, without having to rewrite the parts that are shared with a standard formulation.

- To be able to easily extend and modify an optimal power flow formulation to include new variables, constraints and/or costs.

- Example applications:
 - co-optimize energy and reserves
 - add environmental costs (e.g. CO2, SOx, NOx) or constraints
 - contingency constrained OPF

➡ MATPOWER 4 available soon at: http://www.pserc.cornell.edu/matpower/