Addendum to AC Power Flows and their Derivatives using Complex Matrix Notation: Nodal Current Balance

Baljinnyam Sereeter Ray D. Zimmerman

April 2, 2018*

Matpower Technical Note 3

[^0]
Contents

1 Notation 3
2 Introduction 4
3 Voltages 5
3.1 Bus Voltages 5
3.1.1 First Derivatives 5
4 Bus Injections 6
4.1 Complex Current Injections 6
4.1.1 First Derivatives 6
4.1.2 Second Derivatives 7
4.2 Complex Power Injections 13
5 Branch Flows 13
6 Generalized AC OPF Costs 13
7 Lagrangian of the AC OPF 13
7.1 Nodal Current Balance 14
7.1.1 First Derivatives 14
7.1.2 Second Derivatives 15
7.2 Nodal Power Balance 15
8 Revision History 16
References 17

1 Notation

n_{b}, n_{g}, n_{l} number of buses, generators, branches, respectively
$\left|v_{i}\right|, \theta_{i} \quad$ bus voltage magnitude and angle at bus i
$v_{i} \quad$ complex bus voltage at bus i, that is $\left|v_{i}\right| e^{j \theta_{i}}$
$\mathcal{V}, \Theta \quad n_{b} \times 1$ vectors of bus voltage magnitudes and angles
$V, \Lambda \quad n_{b} \times 1$ vector of complex bus voltages v_{i} and their inverses $\frac{1}{v_{i}}$
$I^{\text {bus }} \quad n_{b} \times 1$ vector of complex bus current injections
$I^{f}, I^{t} \quad n_{l} \times 1$ vectors of complex branch current injections, from and to ends
$S^{\text {bus }} \quad n_{b} \times 1$ vector of complex bus power injections
$S^{f}, S^{t} \quad n_{l} \times 1$ vectors of complex branch power flows, from and to ends
$S_{g} \quad n_{g} \times 1$ vector of generator complex power injections
$P, Q \quad$ real and reactive power flows/injections, $S=P+j Q$
$M, N \quad$ real and imaginary parts of current flows/injections, $I=M+j N$
$Y_{\text {bus }} \quad n_{b} \times n_{b}$ system bus admittance matrix
$Y_{f}, Y_{t} \quad n_{l} \times n_{b}$ system branch admittance matrices, from and to ends
$C_{g} \quad n_{b} \times n_{g}$ generator connection matrix
$(i, j)^{t h}$ element is 1 if generator j is located at bus $i, 0$ otherwise
$C_{f}, C_{t} \quad n_{l} \times n_{b}$ branch connection matrices, from and to ends, $(i, j)^{t h}$ element is 1 if from end, or to end, respectively, of branch i is connected to bus $j, 0$ otherwise
$[A]$ diagonal matrix with vector A on the diagonal
$A^{\top} \quad$ (non-conjugate) transpose of matrix A
$A^{*} \quad$ complex conjugate of A
$A^{b} \quad$ matrix exponent for matrix A, or element-wise exponent for vector A
$\mathbf{1}_{n},\left[\mathbf{1}_{n}\right] \quad n \times 1$ vector of all ones, $n \times n$ identity matrix
0 appropriately-sized vector or matrix of all zeros

2 Introduction

This document is a supplement to Matpower Technical Note 2 "AC Power Flows, Generalized OPF Costs and their Derivatives using Complex Matrix Notation" [1], adding formulas for full nodal current balance, including injections from generators and loads. Matpower Technical Note 4 [2] presents formulas for variations based on a cartesian coordinate representation of bus voltages.

The purpose of these documents is to show how the AC power balance and flow equations used in power flow and optimal power flow computations can be expressed in terms of complex matrices, and how their first and second derivatives can be computed efficiently using complex sparse matrix manipulations. The relevant code in Matpower [3-5] is based on the formulas found in these three notes.

We will be looking at complex functions of the real valued vector

$$
X=\left[\begin{array}{c}
\Theta \tag{1}\\
\mathcal{V} \\
P_{g} \\
Q_{g}
\end{array}\right]
$$

For a complex scalar function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ of a real vector $X=\left[\begin{array}{llll}x_{1} & x_{2} & \cdots & x_{n}\end{array}\right]^{\top}$, we use the following notation for the first derivatives (transpose of the gradient)

$$
f_{X}=\frac{\partial f}{\partial X}=\left[\begin{array}{llll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}} & \cdots & \frac{\partial f}{\partial x_{n}} \tag{2}
\end{array}\right] .
$$

The matrix of second partial derivatives, the Hessian of f, is

$$
f_{X X}=\frac{\partial^{2} f}{\partial X^{2}}=\frac{\partial}{\partial X}\left(\frac{\partial f}{\partial X}\right)^{\top}=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \tag{3}\\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

For a complex vector function $F: \mathbb{R}^{n} \rightarrow \mathbb{C}^{m}$ of a vector X, where

$$
F(X)=\left[\begin{array}{llll}
f_{1}(X) & f_{2}(X) & \cdots & f_{m}(X) \tag{4}
\end{array}\right]^{\top}
$$

the first derivatives form the Jacobian matrix, where row i is the transpose of the gradient of f_{i}.

$$
F_{X}=\frac{\partial F}{\partial X}=\left[\begin{array}{ccc}
\frac{\partial f_{1}}{\partial x_{1}} & \cdots & \frac{\partial f_{1}}{\partial x_{n}} \tag{5}\\
\vdots & \ddots & \vdots \\
\frac{\partial f_{m}}{\partial x_{1}} & \cdots & \frac{\partial f_{m}}{\partial x_{n}}
\end{array}\right]
$$

In these derivations, the full 3-dimensional set of second partial derivatives of F will not be computed. Instead a matrix of partial derivatives will be formed by computing the Jacobian of the vector function obtained by multiplying the transpose of the Jacobian of F by a constant vector λ, using the following notation.

$$
\begin{equation*}
F_{X X}(\alpha)=\left.\left(\frac{\partial}{\partial X}\left(F_{X}^{\top} \lambda\right)\right)\right|_{\lambda=\alpha} \tag{6}
\end{equation*}
$$

Just to clarify the notation, if Y and Z are subvectors of X, then

$$
\begin{equation*}
F_{Y Z}(\alpha)=\left.\left(\frac{\partial}{\partial Z}\left(F_{Y}^{\top} \lambda\right)\right)\right|_{\lambda=\alpha} \tag{7}
\end{equation*}
$$

One common operation encountered in these derivations is the element-wise multiplication of a vector A by a vector B to form a new vector C of the same dimension, which can be expressed in either of the following forms

$$
\begin{equation*}
C=[A] B=[B] A \tag{8}
\end{equation*}
$$

It is useful to note that the derivative of such a vector can be calculated by the chain rule as

$$
\begin{equation*}
C_{X}=\frac{\partial C}{\partial X}=[A] \frac{\partial B}{\partial X}+[B] \frac{\partial A}{\partial X}=[A] B_{X}+[B] A_{X} \tag{9}
\end{equation*}
$$

3 Voltages

3.1 Bus Voltages

See the corresponding section in Matpower Technical Note 2. Consider also the vector of inverses of bus voltages $\frac{1}{v_{i}}$, denoted by Λ. Note that

$$
\begin{gather*}
\frac{1}{v_{i}}=\frac{1}{\left|v_{i}\right| e^{j \theta_{i}}}=\frac{\left|v_{i}\right| e^{-j \theta_{i}}}{\left|v_{i}\right|^{2}}=\frac{v_{i}^{*}}{\left|v_{i}\right|^{2}} \tag{10}\\
\Lambda=V^{-1}=[\mathcal{V}]^{-2} V^{*} \tag{11}
\end{gather*}
$$

3.1.1 First Derivatives

$$
\begin{align*}
& \Lambda_{\Theta}=\frac{\partial \Lambda}{\partial \Theta}=-[V]^{-2} V_{\Theta}=-j[V]^{-1}=-j[\Lambda] \tag{12}\\
& \Lambda_{\mathcal{V}}=\frac{\partial \Lambda}{\partial \mathcal{V}}=-[V]^{-2} V_{\mathcal{V}}=-[V]^{-1}[\mathcal{V}]^{-1}=-[\mathcal{V}]^{-1}[\Lambda] \tag{13}
\end{align*}
$$

4 Bus Injections

4.1 Complex Current Injections

Consider the complex current balance equation, $G^{c}(X)=\mathbf{0}$, where

$$
\begin{equation*}
G^{c}(X)=I^{\text {bus }}+I^{d g} \tag{14}
\end{equation*}
$$

and

$$
\begin{align*}
I^{\mathrm{bus}} & =Y_{\mathrm{bus}} V \tag{15}\\
I^{d g} & =\left[S_{d}-C_{g} S_{g}\right]^{*} \Lambda^{*} \tag{16}
\end{align*}
$$

4.1.1 First Derivatives

$$
\left.\begin{array}{rl}
I_{X}^{\text {bus }}= & \frac{\partial I^{\text {bus }}}{\partial X}=\left[\begin{array}{lll}
I_{\Theta}^{\text {bus }} & I_{\mathcal{V}}^{\text {bus }} & \mathbf{0}
\end{array} \quad \mathbf{0}\right.
\end{array}\right] .
$$

$$
\left.\begin{array}{l}
G_{X}^{c}=\frac{\partial G^{c}}{\partial X}=\left[\begin{array}{lll}
G_{\Theta}^{c} & G_{\mathcal{V}}^{c} & G_{P_{g}}^{c}
\end{array} G_{Q_{g}}^{c}\right.
\end{array}\right] .
$$

4.1.2 Second Derivatives

$$
\begin{align*}
I_{X X}^{\text {bus }}(\lambda) & =\frac{\partial}{\partial X}\left(I_{X}^{\text {bus }}{ }^{\top} \lambda\right) \tag{30}\\
& =\left[\begin{array}{cccc}
I_{\Theta \Theta}^{\text {bus }}(\lambda) & I_{\Theta \mathcal{V}}^{\text {bus }}(\lambda) & \mathbf{0} & \mathbf{0} \\
I_{\mathcal{V} \Theta}^{\text {bus }}(\lambda) & I_{\mathcal{V}}^{\text {bus }}(\lambda) & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right] \tag{31}\\
& =\left[\begin{array}{cccc}
\mathcal{B} & \mathcal{C} & \mathbf{0} & \mathbf{0} \\
\mathcal{C} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right] \tag{32}\\
I_{\Theta \Theta}^{\text {bus }}(\lambda) & =\frac{\partial}{\partial \Theta}\left(I_{\Theta}^{\text {bus }}{ }^{\top} \lambda\right) \tag{33}\\
& =\frac{\partial}{\partial \Theta}\left(j[V] Y_{\text {bus }}{ }^{\top} \lambda\right) \tag{34}\\
& =j\left[Y_{\text {bus }}^{\top} \lambda\right] V_{\Theta} \tag{35}\\
& =-\left[Y_{\text {bus }^{\top}}{ }^{\top} \lambda\right][V] \tag{36}\\
& =\mathcal{B} \tag{37}
\end{align*}
$$

$$
\begin{align*}
& I_{\mathcal{V} \Theta}^{\text {bus }}(\lambda)=\frac{\partial}{\partial \Theta}\left(I_{\mathcal{V}}{ }^{\text {bus }} \lambda\right) \tag{38}\\
& =\frac{\partial}{\partial \Theta}\left([E] Y_{\text {bus }}{ }^{\top} \lambda\right) \tag{39}\\
& =\left[Y_{\text {bus }}{ }^{\top} \lambda\right] E_{\Theta} \tag{40}\\
& =j\left[Y_{\text {bus }}{ }^{\top} \lambda\right][E] \tag{41}\\
& =\mathcal{C} \tag{42}\\
& I_{\Theta \mathcal{V}}^{\text {bus }}(\lambda)=\frac{\partial}{\partial \mathcal{V}}\left(I_{\Theta}^{\text {bus }}{ }^{\top} \lambda\right) \tag{43}\\
& =\frac{\partial}{\partial \mathcal{V}}\left(j[V] Y_{\text {bus }}{ }^{\top} \lambda\right) \tag{44}\\
& =j\left[Y_{\text {bus }}{ }^{\top} \lambda\right] V_{\mathcal{V}} \tag{45}\\
& =j\left[Y_{\text {bus }}{ }^{\top} \lambda\right][E] \tag{46}\\
& =I_{\mathcal{V} \Theta}^{\text {bus }}(\lambda)=\mathcal{C} \tag{47}\\
& I_{\mathcal{V} \mathcal{V}}^{\text {bus }}(\lambda)=\frac{\partial}{\partial \mathcal{V}}\left(I_{\mathcal{V}}{ }^{\text {bus }} \lambda\right) \tag{48}\\
& =\frac{\partial}{\partial \mathcal{V}}\left([E] Y_{\text {bus }}{ }^{\top} \lambda\right) \tag{49}\\
& =\left[Y_{\text {bus }}{ }^{\top} \lambda\right] E_{\mathcal{V}} \tag{50}\\
& =0 \tag{51}\\
& I_{X X}^{d g}(\lambda)=\frac{\partial}{\partial X}\left(I_{X}^{d g}{ }^{\top} \lambda\right) \tag{52}\\
& =\left[\begin{array}{cccc}
I_{\Theta \Theta}^{d g}(\lambda) & I_{\Theta \mathcal{V}}^{d g}(\lambda) & I_{\Theta P_{g}}^{d g}(\lambda) & I_{\Theta Q_{g}}^{d g}(\lambda) \\
I_{\mathcal{V} \Theta}^{d g}(\lambda) & I_{\mathcal{V} V}^{d g}(\lambda) & I_{\mathcal{V} P_{g}}^{d g}(\lambda) & I_{\mathcal{V} Q_{g}}^{d g}(\lambda) \\
I_{P_{g} \Theta}^{d g}(\lambda) & I_{P_{g} \mathcal{V}}^{d g}(\lambda) & \mathbf{0} & \mathbf{0} \\
I_{Q_{g} \Theta}^{d g}(\lambda) & I_{Q_{g} \mathcal{V}}^{d g}(\lambda) & \mathbf{0} & \mathbf{0}
\end{array}\right] \tag{53}\\
& =\left[\begin{array}{cccc}
-\mathcal{G} & -j \mathcal{H} & -j \mathcal{K}^{\top} & -\mathcal{K}^{\top} \\
-j \mathcal{H} & 2 \mathcal{D} \mathcal{H} & \mathcal{L}^{\top} & -j \mathcal{L}^{\top} \\
-j \mathcal{K} & \mathcal{L} & \mathbf{0} & \mathbf{0} \\
-\mathcal{K} & -j \mathcal{L} & \mathbf{0} & \mathbf{0}
\end{array}\right] \tag{54}
\end{align*}
$$

$$
\begin{align*}
I_{\Theta \Theta}^{d g}(\lambda) & =\frac{\partial}{\partial \Theta}\left(I_{\Theta}^{d \sigma} \lambda\right) \tag{55}\\
& =\frac{\partial}{\partial \Theta}\left(j\left[S_{d}-C_{g} S_{g}\right]^{*}\left[\Lambda^{*}\right] \lambda\right) \tag{56}\\
& =j\left[S_{d}-C_{g} S_{g}\right]^{*}[\lambda] \Lambda_{\Theta}^{*} \tag{57}\\
& =-\left[S_{d}-C_{g} S_{g}\right]^{*}[\lambda]\left[\Lambda^{*}\right] \tag{58}\\
& =-\mathcal{G} \tag{59}\\
I_{\mathcal{V} \Theta}^{d g}(\lambda) & =\frac{\partial}{\partial \Theta}\left(I_{\mathcal{V}}^{d T} \lambda\right) \tag{60}\\
& =\frac{\partial}{\partial \Theta}\left(-\left[S_{d}-C_{g} S_{g}\right]^{*}[\mathcal{V}]^{-1}\left[\Lambda^{*}\right] \lambda\right) \tag{61}\\
& =-\left[S_{d}-C_{g} S_{g}\right]^{*}[\lambda][\mathcal{V}]^{-1} \Lambda_{\Theta}^{*} \tag{62}\\
& =-j\left[S_{d}-C_{g} S_{g}\right]^{*}[\lambda][\mathcal{V}]^{-1}\left[\Lambda^{*}\right] \tag{63}\\
& =-j \mathcal{H} \tag{64}
\end{align*}
$$

$$
\begin{aligned}
I_{P_{g} \Theta}^{d g}(\lambda) & =\frac{\partial}{\partial \Theta}\left(I_{P_{g}}^{d g} \lambda\right) \\
& =\frac{\partial}{\partial \Theta}\left(-C_{g}^{\top}\left[\Lambda^{*}\right] \lambda\right) \\
& =-C_{g}^{\top}[\lambda] \Lambda_{\Theta}^{*} \\
& =-j C_{g}^{\top}[\lambda]\left[\Lambda^{*}\right] \\
& =-j \mathcal{K}
\end{aligned}
$$

$$
\begin{equation*}
I_{Q_{g} \Theta}^{d g}(\lambda)=\frac{\partial}{\partial \Theta}\left(I_{Q_{g}}^{d g}{ }^{\top} \lambda\right) \tag{70}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{\partial}{\partial \Theta}\left(j C_{g}^{\top}\left[\Lambda^{*}\right] \lambda\right) \tag{71}
\end{equation*}
$$

$$
\begin{equation*}
=j C_{g}^{\top}[\lambda] \Lambda_{\Theta}^{*} \tag{72}
\end{equation*}
$$

$$
\begin{equation*}
=-C_{g}^{\top}[\lambda]\left[\Lambda^{*}\right] \tag{73}
\end{equation*}
$$

$$
\begin{equation*}
=-\mathcal{K} \tag{74}
\end{equation*}
$$

$$
\begin{equation*}
I_{\Theta \mathcal{V}}^{d g}(\lambda)=\frac{\partial}{\partial \mathcal{V}}\left(I_{\Theta}^{d g}{ }^{\top} \lambda\right) \tag{75}
\end{equation*}
$$

$$
\begin{align*}
& =\frac{\partial}{\partial \mathcal{V}}\left(j\left[S_{d}-C_{g} S_{g}\right]^{*}\left[\Lambda^{*}\right] \lambda\right) \tag{76}\\
& =j\left[S_{d}-C_{g} S_{g}\right]^{*}[\lambda] \Lambda_{\mathcal{V}}^{*} \tag{77}\\
& =-j\left[S_{d}-C_{g} S_{g}\right]^{*}[\lambda][\mathcal{V}]^{-1}\left[\Lambda^{*}\right] \tag{78}\\
& =I_{\mathcal{V} \Theta}^{d g}{ }^{\top}(\lambda)=-j \mathcal{H} \tag{79}
\end{align*}
$$

$$
\begin{align*}
I_{Q_{g} \mathcal{V}}^{d g}(\lambda) & =\frac{\partial}{\partial \mathcal{V}}\left(I_{Q_{g}}^{d g} \lambda\right) \tag{91}\\
& =\frac{\partial}{\partial \mathcal{V}}\left(j C_{g}^{\top}\left[\Lambda^{*}\right] \lambda\right) \tag{92}\\
& =j C_{g}^{\top}[\lambda] \Lambda_{\mathcal{V}}^{*} \tag{93}\\
& =-j C_{g}^{\top}[\lambda][\mathcal{V}]^{-1}\left[\Lambda^{*}\right] \tag{94}\\
& =-j \mathcal{L} \tag{95}
\end{align*}
$$

$$
\begin{equation*}
I_{\mathcal{V} \mathcal{V}}^{d g}(\lambda)=\frac{\partial}{\partial \mathcal{V}}\left(I_{\mathcal{V}}^{d g^{\top}} \lambda\right) \tag{80}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{\partial}{\partial \mathcal{V}}\left(-\left[S_{d}-C_{g} S_{g}\right]^{*}[\mathcal{V}]^{-1}\left[\Lambda^{*}\right] \lambda\right) \tag{81}
\end{equation*}
$$

$$
\begin{equation*}
=-\left[S_{d}-C_{g} S_{g}\right]^{*}[\lambda]\left([\mathcal{V}]^{-1} \Lambda_{\mathcal{V}}^{*}+\left[\Lambda^{*}\right] \frac{\partial \mathcal{V}^{-1}}{\partial \mathcal{V}}\right) \tag{82}
\end{equation*}
$$

$$
\begin{equation*}
=-\left[S_{d}-C_{g} S_{g}\right]^{*}[\lambda]\left([\mathcal{V}]^{-1}\left(-[\mathcal{V}]^{-1}\left[\Lambda^{*}\right]\right)-\left[\Lambda^{*}\right][\mathcal{V}]^{-2}\right) \tag{83}
\end{equation*}
$$

$$
\begin{equation*}
=2\left[S_{d}-C_{g} S_{g}\right]^{*}[\lambda][\mathcal{V}]^{-2}\left[\Lambda^{*}\right] \tag{84}
\end{equation*}
$$

$$
\begin{equation*}
=2 \mathcal{D H} \tag{85}
\end{equation*}
$$

$$
\begin{equation*}
I_{P_{g} \mathcal{V}}^{d g}(\lambda)=\frac{\partial}{\partial \mathcal{V}}\left(I_{P_{g}}^{d g \top} \lambda\right) \tag{86}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{\partial}{\partial \mathcal{V}}\left(-C_{g}^{\top}\left[\Lambda^{*}\right] \lambda\right) \tag{87}
\end{equation*}
$$

$$
\begin{equation*}
=-C_{g}^{\top}[\lambda] \Lambda_{\mathcal{V}}^{*} \tag{88}
\end{equation*}
$$

$$
\begin{equation*}
=C_{g}^{\top}[\lambda][\mathcal{V}]^{-1}\left[\Lambda^{*}\right] \tag{89}
\end{equation*}
$$

$$
\begin{equation*}
=\mathcal{L} \tag{90}
\end{equation*}
$$

$$
\begin{align*}
I_{\Theta P_{g}}^{d g}(\lambda) & =\frac{\partial}{\partial P_{g}}\left(I_{\Theta}^{d g}{ }^{\top} \lambda\right) \tag{96}\\
& =\frac{\partial}{\partial P_{g}}\left(j\left[S_{d}-C_{g} S_{g}\right]^{*}\left[\Lambda^{*}\right] \lambda\right) \tag{97}\\
& =-j[\lambda]\left[\Lambda^{*}\right] C_{g} \tag{98}\\
& =I_{P_{g} \Theta}^{d g}(\lambda)=-j \mathcal{K}^{\top} \tag{99}
\end{align*}
$$

$$
\begin{equation*}
I_{\mathcal{V} P_{g}}^{d g}(\lambda)=\frac{\partial}{\partial P_{g}}\left(I_{\mathcal{V}}^{d \sigma^{\top}} \lambda\right) \tag{100}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{\partial^{g}}{\partial P_{g}}\left(-\left[S_{d}-C_{g} S_{g}\right]^{*}[\mathcal{V}]^{-1}\left[\Lambda^{*}\right] \lambda\right) \tag{101}
\end{equation*}
$$

$$
\begin{equation*}
=[\lambda][\mathcal{V}]^{-1}\left[\Lambda^{*}\right] C_{g} \tag{102}
\end{equation*}
$$

$$
\begin{equation*}
=I_{P_{g} \mathcal{V}}^{d g}{ }^{\top}(\lambda)=\mathcal{L}^{\top} \tag{103}
\end{equation*}
$$

$$
\begin{equation*}
I_{\Theta Q_{g}}^{d g}(\lambda)=\frac{\partial}{\partial Q_{g}}\left(I_{\Theta}^{d g}{ }^{\top} \lambda\right) \tag{104}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{\partial}{\partial Q_{g}}\left(j\left[S_{d}-C_{g} S_{g}\right]^{*}\left[\Lambda^{*}\right] \lambda\right) \tag{105}
\end{equation*}
$$

$$
\begin{equation*}
=-[\lambda]\left[\Lambda^{*}\right] C_{g} \tag{106}
\end{equation*}
$$

$$
\begin{equation*}
=I_{Q_{g} \Theta}^{d g}{ }^{\top}(\lambda)=-\mathcal{K}^{\top} \tag{107}
\end{equation*}
$$

$$
\begin{equation*}
I_{\mathcal{V} Q_{g}}^{d g}(\lambda)=\frac{\partial}{\partial Q_{g}}\left(I_{\mathcal{V}}^{d g}{ }^{\top} \lambda\right) \tag{108}
\end{equation*}
$$

$$
\begin{equation*}
=\frac{\partial}{\partial Q_{g}}\left(-\left[S_{d}-C_{g} S_{g}\right]^{*}[\mathcal{V}]^{-1}\left[\Lambda^{*}\right] \lambda\right) \tag{109}
\end{equation*}
$$

$$
\begin{equation*}
=-j[\lambda][\mathcal{V}]^{-1}\left[\Lambda^{*}\right] C_{g} \tag{110}
\end{equation*}
$$

$$
\begin{equation*}
=I_{Q_{g} \mathcal{V}}^{d g}(\lambda)=-j \mathcal{L}^{\top} \tag{111}
\end{equation*}
$$

$$
\begin{equation*}
G_{X X}^{c}(\lambda)=\frac{\partial}{\partial X}\left(G_{X}^{c}{ }^{\top} \lambda\right) \tag{112}
\end{equation*}
$$

$$
\begin{align*}
& =\left[\begin{array}{cccc}
G_{\Theta \Theta}^{c}(\lambda) & G_{\Theta \mathcal{V}}^{c}(\lambda) & G_{\Theta P_{g}}^{c}(\lambda) & G_{\Theta Q_{g}}^{c}(\lambda) \\
G_{\mathcal{V} \Theta}^{c}(\lambda) & G_{\mathcal{V} \mathcal{V}}^{c}(\lambda) & G_{\mathcal{V} P_{g}}^{c}(\lambda) & G_{\mathcal{V} Q_{g}}^{c}(\lambda) \\
G_{P_{\Theta} \Theta}^{c}(\lambda) & G_{P_{g} \mathcal{V}}^{c}(\lambda) & \mathbf{0} & \mathbf{0} \\
G_{Q_{g} \Theta}^{c}(\lambda) & G_{Q_{g} \mathcal{V}}^{c}(\lambda) & \mathbf{0} & \mathbf{0}
\end{array}\right] \tag{113}\\
& =I_{X X}^{\text {bus }}(\lambda)+I_{X X}^{d g}(\lambda) \tag{114}\\
& =\left[\begin{array}{cccc}
\mathcal{B}-\mathcal{G} & \mathcal{C}-j \mathcal{H} & -j \mathcal{K}^{\top} & -\mathcal{K}^{\top} \\
\mathcal{C}-j \mathcal{H} & 2 \mathcal{D} \mathcal{H} & \mathcal{L}^{\top} & -j \mathcal{L}^{\top} \\
-j \mathcal{K} & \mathcal{L} & \mathbf{0} & \mathbf{0} \\
-\mathcal{K} & -j \mathcal{L} & \mathbf{0} & \mathbf{0}
\end{array}\right] \tag{115}
\end{align*}
$$

Computational savings can be achieved by storing and reusing certain intermediate terms during the computation of these second derivatives, as follows:

$$
\begin{align*}
\mathcal{A} & =\left[Y_{\text {bus }}{ }^{\top} \lambda\right] \tag{116}\\
\mathcal{B} & =-\mathcal{A}[V] \tag{117}\\
\mathcal{C} & =j \mathcal{A}[E] \tag{118}\\
\mathcal{D} & =[\mathcal{V}]^{-1} \tag{119}\\
\mathcal{E} & =[\lambda]\left[\Lambda^{*}\right] \tag{120}\\
\mathcal{F} & =\left[S_{d}-C_{g} S_{g}\right]^{*} \tag{121}\\
\mathcal{G} & =\mathcal{E} \mathcal{F} \tag{122}\\
\mathcal{H} & =\mathcal{D} \mathcal{G} \tag{123}\\
\mathcal{K} & =C_{g}^{\top} \mathcal{E} \tag{124}\\
\mathcal{L} & =\mathcal{K D} \tag{125}\\
G_{\Theta \Theta}^{c}(\lambda) & =\mathcal{B}-\mathcal{G} \tag{126}\\
G_{\mathcal{V} \Theta}^{c}(\lambda) & =\mathcal{C}-j \mathcal{H} \tag{127}\\
G_{P_{g} \Theta}^{c}(\lambda) & =-j \mathcal{K} \tag{128}\\
G_{Q_{g} \Theta}^{c}(\lambda) & =-\mathcal{K} \tag{129}\\
G_{\mathcal{V} \mathcal{V}}^{c}(\lambda) & =2 \mathcal{D} \mathcal{H} \tag{130}\\
G_{P_{g} \mathcal{V}}^{c}(\lambda) & =\mathcal{L} \tag{131}\\
G_{Q_{g} \mathcal{V}}^{c}(\lambda) & =-j \mathcal{L} \tag{132}\\
G_{\Theta \Theta \mathcal{V}}^{c}(\lambda) & =G_{\mathcal{V} \Theta}^{c}(\lambda) \tag{133}\\
G_{\Theta P_{g}}^{c}(\lambda) & =G_{P_{g} \Theta}^{c}(\lambda) \tag{134}
\end{align*}
$$

$$
\begin{align*}
G_{\mathcal{V} P_{g}}^{c}(\lambda) & =G_{P_{g} \mathcal{V}}^{c}{ }^{\top}(\lambda) \tag{135}\\
G_{\Theta Q_{g}}^{c}(\lambda) & =G_{Q_{g} \Theta}^{c}(\lambda) \tag{136}\\
G_{\mathcal{V} Q_{g}}^{c}(\lambda) & =G_{Q_{g} \mathcal{V}}^{c}{ }^{\top}(\lambda) \tag{137}
\end{align*}
$$

4.2 Complex Power Injections

See the corresponding section in Matpower Technical Note 2.

5 Branch Flows

See the corresponding section in Matpower Technical Note 2.

6 Generalized AC OPF Costs

Let X be defined as in Matpower Technical Note 2

$$
X=\left[\begin{array}{c}
\Theta \tag{138}\\
\mathcal{V} \\
P_{g} \\
Q_{g} \\
Y \\
Z
\end{array}\right]
$$

where Y is the $n_{y} \times 1$ vector of cost variables associated with piecewise linear generator costs and Z is an $n_{z} \times 1$ vector of additional linearly constrained user variables.

See the corresponding section in Matpower Technical Note 2 for additional details.

7 Lagrangian of the AC OPF

Consider the following AC OPF problem formulation, where X is defined as in (138), f is the generalized cost function described above, and \mathcal{X} represents the reduced form of X, consisting of only $\Theta, \mathcal{V}, P_{g}$ and Q_{g}, without Y and Z.

$$
\begin{equation*}
\min _{X} f(X) \tag{139}
\end{equation*}
$$

subject to

$$
\begin{align*}
& G(X)=\mathbf{0} \tag{140}\\
& H(X) \leq \mathbf{0} \tag{141}
\end{align*}
$$

where

$$
G(X)=\left[\begin{array}{c}
\Re\left\{G^{c}(\mathcal{X})\right\} \tag{142}\\
\Im\left\{G^{c}(\mathcal{X})\right\} \\
A_{E} X-B_{E}
\end{array}\right]
$$

and

$$
H(X)=\left[\begin{array}{c}
H^{f}(\mathcal{X}) \tag{143}\\
H^{t}(\mathcal{X}) \\
A_{I} X-B_{I}
\end{array}\right]
$$

Partitioning the corresponding multipliers λ and μ similarly,

$$
\lambda=\left[\begin{array}{c}
\lambda_{M} \tag{144}\\
\lambda_{N} \\
\lambda_{E}
\end{array}\right], \quad \mu=\left[\begin{array}{c}
\mu_{f} \\
\mu_{t} \\
\mu_{I}
\end{array}\right]
$$

the Lagrangian for this problem can be written as

$$
\begin{equation*}
\mathcal{L}(X, \lambda, \mu)=f(X)+\lambda^{\top} G(X)+\mu^{\top} H(X) \tag{145}
\end{equation*}
$$

7.1 Nodal Current Balance

7.1.1 First Derivatives

$$
\begin{align*}
\mathcal{L}_{X}(X, \lambda, \mu) & =f_{X}+\lambda^{\top} G_{X}+\mu^{\top} H_{X} \tag{146}\\
\mathcal{L}_{\lambda}(X, \lambda, \mu) & =G^{\top}(X) \tag{147}\\
\mathcal{L}_{\mu}(X, \lambda, \mu) & =H^{\top}(X) \tag{148}
\end{align*}
$$

where

$$
G_{X}=\left[\begin{array}{ccc}
\Re\left\{G_{\mathcal{X}}^{c}\right\} & \mathbf{0} & \mathbf{0} \tag{149}\\
\Im\left\{G_{\mathcal{X}}^{c}\right\} & \mathbf{0} & \mathbf{0} \\
& A_{E} &
\end{array}\right]=\left[\begin{array}{cccccc}
\Re\left\{G_{\Theta}^{c}\right\} & \Re\left\{G_{\mathcal{V}}^{c}\right\} & \Re\left\{G_{P_{g}}^{c}\right\} & \Re\left\{G_{Q_{g}}^{c}\right\} & \mathbf{0} & \mathbf{0} \\
\Im\left\{G_{\Theta}^{c}\right\} & \Im\left\{G_{\mathcal{V}}^{c}\right\} & \Im\left\{G_{P_{g}}^{c}\right\} & \Im\left\{G_{Q_{g}}^{c}\right\} & \mathbf{0} & \mathbf{0} \\
& & A_{E} & &
\end{array}\right]
$$

and

$$
H_{X}=\left[\begin{array}{ccc}
H_{\mathcal{X}}^{f} & \mathbf{0} & \mathbf{0} \tag{150}\\
H_{\mathcal{X}}^{t} & \mathbf{0} & \mathbf{0} \\
& A_{I} &
\end{array}\right]=\left[\begin{array}{cccccc}
H_{\Theta}^{f} & H_{\mathcal{V}}^{f} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
H_{\Theta}^{t} & H_{\mathcal{V}}^{t} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
& & A_{I} & & &
\end{array}\right]
$$

7.1.2 Second Derivatives

$$
\begin{equation*}
\mathcal{L}_{X X}(X, \lambda, \mu)=f_{X X}+G_{X X}(\lambda)+H_{X X}(\mu) \tag{151}
\end{equation*}
$$

where

$$
\begin{align*}
G_{X X}(\lambda) & =\left[\begin{array}{cccc}
\Re\left\{G_{\mathcal{X} \mathcal{X}}^{c}\left(\lambda_{M}\right)\right\}+\Im\left\{G_{\mathcal{X X}}^{c}\left(\lambda_{N}\right)\right\} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right] \tag{152}\\
& \left.=\Re\left\{\begin{array}{cccccc}
G_{\Theta \Theta}^{c}\left(\lambda_{M}\right) & G_{\Theta \mathcal{V}}^{c}\left(\lambda_{M}\right) & G_{\Theta P_{g}}^{c}\left(\lambda_{M}\right) & G_{\Theta Q_{g}}^{c}\left(\lambda_{M}\right) & \mathbf{0} & \mathbf{0} \\
G_{\mathcal{V} \Theta}^{c}\left(\lambda_{M}\right) & G_{\mathcal{V} \mathcal{V}}^{c}\left(\lambda_{M}\right) & G_{\mathcal{V} P_{g}}^{c}\left(\lambda_{M}\right) & G_{\mathcal{V} Q_{g}}^{c}\left(\lambda_{M}\right) & \mathbf{0} & \mathbf{0} \\
G_{P_{g} \Theta}^{c}\left(\lambda_{M}\right) & G_{P_{g} \mathcal{V}}^{c}\left(\lambda_{M}\right) & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
G_{Q_{g} \Theta}^{c}\left(\lambda_{M}\right) & G_{Q_{g} \mathcal{V}}^{c}\left(\lambda_{M}\right) & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right]\right\} \\
& +\Im\left\{\left[\begin{array}{cccccc}
G_{\Theta \Theta \Theta}^{c}\left(\lambda_{N}\right) & G_{\Theta \mathcal{V}}^{c}\left(\lambda_{N}\right) & G_{\Theta P_{P_{g}}}^{c}\left(\lambda_{N}\right) & G_{\Theta Q_{g}}^{c}\left(\lambda_{N}\right) & \mathbf{0} & \mathbf{0} \\
G_{\mathcal{V} \Theta}^{c}\left(\lambda_{N}\right) & G_{\mathcal{V}}^{c}\left(\lambda_{N}\right) & G_{\mathcal{V} P_{g}}^{c}\left(\lambda_{N}\right) & G_{\mathcal{V} Q_{g}}^{c}\left(\lambda_{N}\right) & \mathbf{0} & \mathbf{0} \\
G_{P_{g} \Theta}^{c}\left(\lambda_{N}\right) & G_{P_{g} \mathcal{V}}^{c}\left(\lambda_{N}\right) & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
G_{Q_{g} \Theta}^{c}\left(\lambda_{N}\right) & G_{Q_{g} \mathcal{V}}^{c}\left(\lambda_{N}\right) & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right]\right\} \tag{153}
\end{align*}
$$

and

$$
\begin{align*}
H_{X X}(\mu)= & {\left[\begin{array}{cccc}
H_{\mathcal{X X}}^{f}\left(\mu_{f}\right)+H_{\mathcal{X X}}^{t}\left(\mu_{t}\right) & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right] } \tag{154}\\
& =\left[\begin{array}{cccccc}
H_{\Theta \Theta}^{f}\left(\mu_{f}\right)+H_{\Theta \Theta \Theta}^{t}\left(\mu_{t}\right) & H_{\Theta \mathcal{V}}^{f}\left(\mu_{f}\right)+H_{\Theta \mathcal{V}}^{t}\left(\mu_{t}\right) & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
H_{\mathcal{V} \Theta}^{f}\left(\mu_{f}\right)+H_{\mathcal{V} \Theta}^{t}\left(\mu_{t}\right) & H_{\mathcal{V} \mathcal{V}}^{f}\left(\mu_{f}\right)+H_{\mathcal{V} \mathcal{V}}^{t}\left(\mu_{t}\right) & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0}
\end{array}\right] \tag{155}
\end{align*}
$$

7.2 Nodal Power Balance

See the corresponding section in Matpower Technical Note 2.

8 Revision History

- Revision 1 (Jume 20, 2019) - Added separate references for Matpower software and User's Manual. Included DOIs for all Matpower software, User's Manual and Technical Note references. Updated Matpower website links to https://matpower.org.
- Initial version (April 2, 2018) - Published as "Matpower Technical Note 3".

References

[1] R. D. Zimmerman, AC Power Flows, Generalized OPF Costs and their Derivatives using Complex Matrix Notation, Matpower Technical Note 2, February 2010. [Online]. Available: https://matpower.org/docs/ TN2-OPF-Derivatives.pdf doi: 10.5281/zenodo. 32378662
[2] B. Sereeter and R. D. Zimmerman, AC Power Flows and their Derivatives using Complex Matrix Notation and Cartesian Coordinate Voltages, Matpower Technical Note 4, April 2018. [Online]. Available: https://matpower.org/ docs/TN4-OPF-Derivatives-Cartesian.pdf
doi: 10.5281/zenodo. 32379092
[3] R. D. Zimmerman, C. E. Murillo-Sánchez, and R. J. Thomas, "Matpower: Steady-State Operations, Planning and Analysis Tools for Power Systems Research and Education," Power Systems, IEEE Transactions on, vol. 26, no. 1, pp. 12-19, Feb. 2011.
doi: 10.1109/TPWRS.2010.2051168 2
[4] R. D. Zimmerman, C. E. Murillo-Sánchez (2019). Matpower
[Software]. Available: https://matpower.org doi: 10.5281/zenodo. 32365352
[5] R. D. Zimmerman, C. E. Murillo-Sánchez. Matpower User's Manual. 2019. [Online]. Available: https://matpower.org/docs/MATPOWER-manual.pdf doi: 10.5281/zenodo. 32365192

[^0]: *Revision 1 - June 20, 2019. See Section 8 for revision history details.

