Home > matpower5.1 > qps_glpk.m

qps_glpk

PURPOSE ^

QPS_GLPK Linear Program Solver based on GLPK - GNU Linear Programming Kit.

SYNOPSIS ^

function [x, f, eflag, output, lambda] = qps_glpk(H, c, A, l, u, xmin, xmax, x0, opt)

DESCRIPTION ^

QPS_GLPK  Linear Program Solver based on GLPK - GNU Linear Programming Kit.
   [X, F, EXITFLAG, OUTPUT, LAMBDA] = ...
       QPS_GLPK(H, C, A, L, U, XMIN, XMAX, X0, OPT)
   A wrapper function providing a MATPOWER standardized interface for using
   GLKP to solve the following LP (linear programming) problem:

       min C'*X
        X

   subject to

       L <= A*X <= U       (linear constraints)
       XMIN <= X <= XMAX   (variable bounds)

   Inputs (all optional except H, C, A and L):
       H : dummy matrix (possibly sparse) of quadratic cost coefficients
           for QP problems, which GLPK does not handle
       C : vector of linear cost coefficients
       A, L, U : define the optional linear constraints. Default
           values for the elements of L and U are -Inf and Inf,
           respectively.
       XMIN, XMAX : optional lower and upper bounds on the
           X variables, defaults are -Inf and Inf, respectively.
       X0 : optional starting value of optimization vector X (NOT USED)
       OPT : optional options structure with the following fields,
           all of which are also optional (default values shown in
           parentheses)
           verbose (0) - controls level of progress output displayed
               0 = no progress output
               1 = some progress output
               2 = verbose progress output
           glpk_opt - options struct for GLPK, value in
               verbose overrides these options
       PROBLEM : The inputs can alternatively be supplied in a single
           PROBLEM struct with fields corresponding to the input arguments
           described above: H, c, A, l, u, xmin, xmax, x0, opt

   Outputs:
       X : solution vector
       F : final objective function value
       EXITFLAG : exit flag, 1 - optimal, <= 0 - infeasible, unbounded or other
       OUTPUT : struct with errnum and status fields from GLPK output args
       LAMBDA : struct containing the Langrange and Kuhn-Tucker
           multipliers on the constraints, with fields:
           mu_l - lower (left-hand) limit on linear constraints
           mu_u - upper (right-hand) limit on linear constraints
           lower - lower bound on optimization variables
           upper - upper bound on optimization variables

   Note the calling syntax is almost identical to that of GLPK. The main
   difference is that the linear constraints are specified with A, L, U
   instead of A, B, Aeq, Beq.

   Calling syntax options:
       [x, f, exitflag, output, lambda] = ...
           qps_glpk(H, c, A, l, u, xmin, xmax, x0, opt)

       x = qps_glpk(H, c, A, l, u)
       x = qps_glpk(H, c, A, l, u, xmin, xmax)
       x = qps_glpk(H, c, A, l, u, xmin, xmax, x0)
       x = qps_glpk(H, c, A, l, u, xmin, xmax, x0, opt)
       x = qps_glpk(problem), where problem is a struct with fields:
                       H, c, A, l, u, xmin, xmax, x0, opt
                       all fields except 'c', 'A' and 'l' or 'u' are optional
       x = qps_glpk(...)
       [x, f] = qps_glpk(...)
       [x, f, exitflag] = qps_glpk(...)
       [x, f, exitflag, output] = qps_glpk(...)
       [x, f, exitflag, output, lambda] = qps_glpk(...)


   Example: (problem from from http://www.jmu.edu/docs/sasdoc/sashtml/iml/chap8/sect12.htm)
       H = [   1003.1  4.3     6.3     5.9;
               4.3     2.2     2.1     3.9;
               6.3     2.1     3.5     4.8;
               5.9     3.9     4.8     10  ];
       c = zeros(4,1);
       A = [   1       1       1       1;
               0.17    0.11    0.10    0.18    ];
       l = [1; 0.10];
       u = [1; Inf];
       xmin = zeros(4,1);
       x0 = [1; 0; 0; 1];
       opt = struct('verbose', 2);
       [x, f, s, out, lambda] = qps_glpk(H, c, A, l, u, xmin, [], x0, opt);

   See also GLPK.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SOURCE CODE ^

0001 function [x, f, eflag, output, lambda] = qps_glpk(H, c, A, l, u, xmin, xmax, x0, opt)
0002 %QPS_GLPK  Linear Program Solver based on GLPK - GNU Linear Programming Kit.
0003 %   [X, F, EXITFLAG, OUTPUT, LAMBDA] = ...
0004 %       QPS_GLPK(H, C, A, L, U, XMIN, XMAX, X0, OPT)
0005 %   A wrapper function providing a MATPOWER standardized interface for using
0006 %   GLKP to solve the following LP (linear programming) problem:
0007 %
0008 %       min C'*X
0009 %        X
0010 %
0011 %   subject to
0012 %
0013 %       L <= A*X <= U       (linear constraints)
0014 %       XMIN <= X <= XMAX   (variable bounds)
0015 %
0016 %   Inputs (all optional except H, C, A and L):
0017 %       H : dummy matrix (possibly sparse) of quadratic cost coefficients
0018 %           for QP problems, which GLPK does not handle
0019 %       C : vector of linear cost coefficients
0020 %       A, L, U : define the optional linear constraints. Default
0021 %           values for the elements of L and U are -Inf and Inf,
0022 %           respectively.
0023 %       XMIN, XMAX : optional lower and upper bounds on the
0024 %           X variables, defaults are -Inf and Inf, respectively.
0025 %       X0 : optional starting value of optimization vector X (NOT USED)
0026 %       OPT : optional options structure with the following fields,
0027 %           all of which are also optional (default values shown in
0028 %           parentheses)
0029 %           verbose (0) - controls level of progress output displayed
0030 %               0 = no progress output
0031 %               1 = some progress output
0032 %               2 = verbose progress output
0033 %           glpk_opt - options struct for GLPK, value in
0034 %               verbose overrides these options
0035 %       PROBLEM : The inputs can alternatively be supplied in a single
0036 %           PROBLEM struct with fields corresponding to the input arguments
0037 %           described above: H, c, A, l, u, xmin, xmax, x0, opt
0038 %
0039 %   Outputs:
0040 %       X : solution vector
0041 %       F : final objective function value
0042 %       EXITFLAG : exit flag, 1 - optimal, <= 0 - infeasible, unbounded or other
0043 %       OUTPUT : struct with errnum and status fields from GLPK output args
0044 %       LAMBDA : struct containing the Langrange and Kuhn-Tucker
0045 %           multipliers on the constraints, with fields:
0046 %           mu_l - lower (left-hand) limit on linear constraints
0047 %           mu_u - upper (right-hand) limit on linear constraints
0048 %           lower - lower bound on optimization variables
0049 %           upper - upper bound on optimization variables
0050 %
0051 %   Note the calling syntax is almost identical to that of GLPK. The main
0052 %   difference is that the linear constraints are specified with A, L, U
0053 %   instead of A, B, Aeq, Beq.
0054 %
0055 %   Calling syntax options:
0056 %       [x, f, exitflag, output, lambda] = ...
0057 %           qps_glpk(H, c, A, l, u, xmin, xmax, x0, opt)
0058 %
0059 %       x = qps_glpk(H, c, A, l, u)
0060 %       x = qps_glpk(H, c, A, l, u, xmin, xmax)
0061 %       x = qps_glpk(H, c, A, l, u, xmin, xmax, x0)
0062 %       x = qps_glpk(H, c, A, l, u, xmin, xmax, x0, opt)
0063 %       x = qps_glpk(problem), where problem is a struct with fields:
0064 %                       H, c, A, l, u, xmin, xmax, x0, opt
0065 %                       all fields except 'c', 'A' and 'l' or 'u' are optional
0066 %       x = qps_glpk(...)
0067 %       [x, f] = qps_glpk(...)
0068 %       [x, f, exitflag] = qps_glpk(...)
0069 %       [x, f, exitflag, output] = qps_glpk(...)
0070 %       [x, f, exitflag, output, lambda] = qps_glpk(...)
0071 %
0072 %
0073 %   Example: (problem from from http://www.jmu.edu/docs/sasdoc/sashtml/iml/chap8/sect12.htm)
0074 %       H = [   1003.1  4.3     6.3     5.9;
0075 %               4.3     2.2     2.1     3.9;
0076 %               6.3     2.1     3.5     4.8;
0077 %               5.9     3.9     4.8     10  ];
0078 %       c = zeros(4,1);
0079 %       A = [   1       1       1       1;
0080 %               0.17    0.11    0.10    0.18    ];
0081 %       l = [1; 0.10];
0082 %       u = [1; Inf];
0083 %       xmin = zeros(4,1);
0084 %       x0 = [1; 0; 0; 1];
0085 %       opt = struct('verbose', 2);
0086 %       [x, f, s, out, lambda] = qps_glpk(H, c, A, l, u, xmin, [], x0, opt);
0087 %
0088 %   See also GLPK.
0089 
0090 %   MATPOWER
0091 %   Copyright (c) 2010-2015 by Power System Engineering Research Center (PSERC)
0092 %   by Ray Zimmerman, PSERC Cornell
0093 %
0094 %   $Id: qps_glpk.m 2661 2015-03-20 17:02:46Z ray $
0095 %
0096 %   This file is part of MATPOWER.
0097 %   Covered by the 3-clause BSD License (see LICENSE file for details).
0098 %   See http://www.pserc.cornell.edu/matpower/ for more info.
0099 
0100 %% check for Optimization Toolbox
0101 % if ~have_fcn('quadprog')
0102 %     error('qps_glpk: requires the MEX interface to GLPK');
0103 % end
0104 
0105 %%----- input argument handling  -----
0106 %% gather inputs
0107 if nargin == 1 && isstruct(H)       %% problem struct
0108     p = H;
0109     if isfield(p, 'opt'),   opt = p.opt;    else,   opt = [];   end
0110     if isfield(p, 'x0'),    x0 = p.x0;      else,   x0 = [];    end
0111     if isfield(p, 'xmax'),  xmax = p.xmax;  else,   xmax = [];  end
0112     if isfield(p, 'xmin'),  xmin = p.xmin;  else,   xmin = [];  end
0113     if isfield(p, 'u'),     u = p.u;        else,   u = [];     end
0114     if isfield(p, 'l'),     l = p.l;        else,   l = [];     end
0115     if isfield(p, 'A'),     A = p.A;        else,   A = [];     end
0116     if isfield(p, 'c'),     c = p.c;        else,   c = [];     end
0117     if isfield(p, 'H'),     H = p.H;        else,   H = [];     end
0118 else                                %% individual args
0119     if nargin < 9
0120         opt = [];
0121         if nargin < 8
0122             x0 = [];
0123             if nargin < 7
0124                 xmax = [];
0125                 if nargin < 6
0126                     xmin = [];
0127                 end
0128             end
0129         end
0130     end
0131 end
0132 
0133 %% define nx, set default values for missing optional inputs
0134 if isempty(H) || ~any(any(H))
0135     if isempty(A) && isempty(xmin) && isempty(xmax)
0136         error('qps_glpk: LP problem must include constraints or variable bounds');
0137     else
0138         if ~isempty(A)
0139             nx = size(A, 2);
0140         elseif ~isempty(xmin)
0141             nx = length(xmin);
0142         else    % if ~isempty(xmax)
0143             nx = length(xmax);
0144         end
0145     end
0146 else
0147     error('qps_glpk: GLPK handles only LP problems, not QP problems');
0148     nx = size(H, 1);
0149 end
0150 if isempty(c)
0151     c = zeros(nx, 1);
0152 end
0153 if isempty(A) || (~isempty(A) && (isempty(l) || all(l == -Inf)) && ...
0154                                  (isempty(u) || all(u == Inf)))
0155     A = sparse(0,nx);           %% no limits => no linear constraints
0156 end
0157 nA = size(A, 1);                %% number of original linear constraints
0158 if isempty(u)                   %% By default, linear inequalities are ...
0159     u = Inf(nA, 1);             %% ... unbounded above and ...
0160 end
0161 if isempty(l)
0162     l = -Inf(nA, 1);            %% ... unbounded below.
0163 end
0164 if isempty(xmin)                %% By default, optimization variables are ...
0165     xmin = -Inf(nx, 1);         %% ... unbounded below and ...
0166 end
0167 if isempty(xmax)
0168     xmax = Inf(nx, 1);          %% ... unbounded above.
0169 end
0170 if isempty(x0)
0171     x0 = zeros(nx, 1);
0172 end
0173 
0174 %% default options
0175 if ~isempty(opt) && isfield(opt, 'verbose') && ~isempty(opt.verbose)
0176     verbose = opt.verbose;
0177 else
0178     verbose = 0;
0179 end
0180 
0181 %% split up linear constraints
0182 ieq = find( abs(u-l) <= eps );          %% equality
0183 igt = find( u >=  1e10 & l > -1e10 );   %% greater than, unbounded above
0184 ilt = find( l <= -1e10 & u <  1e10 );   %% less than, unbounded below
0185 ibx = find( (abs(u-l) > eps) & (u < 1e10) & (l > -1e10) );
0186 AA = [ A(ieq, :); A(ilt, :); -A(igt, :); A(ibx, :); -A(ibx, :) ];
0187 bb = [ u(ieq);    u(ilt);    -l(igt);    u(ibx);    -l(ibx)];
0188 
0189 %% grab some dimensions
0190 nlt = length(ilt);      %% number of upper bounded linear inequalities
0191 ngt = length(igt);      %% number of lower bounded linear inequalities
0192 nbx = length(ibx);      %% number of doubly bounded linear inequalities
0193 neq = length(ieq);      %% number of equalities
0194 nie = nlt+ngt+2*nbx;    %% number of inequalities
0195 
0196 ctype = [repmat('S', neq, 1); repmat('U', nlt+ngt+2*nbx, 1)];
0197 vtype = repmat('C', nx, 1);
0198 
0199 %% set options struct for GLPK
0200 if ~isempty(opt) && isfield(opt, 'glpk_opt') && ~isempty(opt.glpk_opt)
0201     glpk_opt = glpk_options(opt.glpk_opt);
0202 else
0203     glpk_opt = glpk_options;
0204 end
0205 glpk_opt.msglev = verbose;
0206 
0207 %% call the solver
0208 [x, f, errnum, extra] = ...
0209     glpk(c, AA, bb, xmin, xmax, ctype, vtype, 1, glpk_opt);
0210 
0211 %% set exit flag
0212 if isfield(extra, 'status')             %% status found in extra.status
0213     output.errnum = errnum;
0214     output.status = extra.status;
0215     eflag = -errnum;
0216     if eflag == 0 && extra.status == 5
0217         eflag = 1;
0218     end
0219 else                                    %% status found in errnum
0220     output.errnum = [];
0221     output.status = errnum;
0222     if have_fcn('octave')
0223         if errnum == 180 || errnum == 151 || errnum == 171
0224             eflag = 1;
0225         else
0226             eflag = 0;
0227         end
0228     else
0229         if errnum == 5
0230             eflag = 1;
0231         else
0232             eflag = 0;
0233         end
0234     end
0235 end
0236 
0237 %% repackage lambdas
0238 if isempty(extra) || ~isfield(extra, 'lambda') || isempty(extra.lambda)
0239     lambda = struct( ...
0240         'mu_l', zeros(nA, 1), ...
0241         'mu_u', zeros(nA, 1), ...
0242         'lower', zeros(nx, 1), ...
0243         'upper', zeros(nx, 1) ...
0244     );
0245 else
0246     lam.eqlin = extra.lambda(1:neq);
0247     lam.ineqlin = extra.lambda(neq+(1:nie));
0248     lam.lower = extra.redcosts;
0249     lam.upper = -extra.redcosts;
0250     lam.lower(lam.lower < 0) = 0;
0251     lam.upper(lam.upper < 0) = 0;
0252     kl = find(lam.eqlin > 0);   %% lower bound binding
0253     ku = find(lam.eqlin < 0);   %% upper bound binding
0254 
0255     mu_l = zeros(nA, 1);
0256     mu_l(ieq(kl)) = lam.eqlin(kl);
0257     mu_l(igt) = -lam.ineqlin(nlt+(1:ngt));
0258     mu_l(ibx) = -lam.ineqlin(nlt+ngt+nbx+(1:nbx));
0259 
0260     mu_u = zeros(nA, 1);
0261     mu_u(ieq(ku)) = -lam.eqlin(ku);
0262     mu_u(ilt) = -lam.ineqlin(1:nlt);
0263     mu_u(ibx) = -lam.ineqlin(nlt+ngt+(1:nbx));
0264 
0265     lambda = struct( ...
0266         'mu_l', mu_l, ...
0267         'mu_u', mu_u, ...
0268         'lower', lam.lower(1:nx), ...
0269         'upper', lam.upper(1:nx) ...
0270     );
0271 end

Generated on Fri 20-Mar-2015 18:23:34 by m2html © 2005