Home > matpower7.1 > lib > psse_convert_hvdc.m

psse_convert_hvdc

PURPOSE ^

PSSE_CONVERT_HVDC Convert HVDC data from PSS/E RAW to MATPOWER

SYNOPSIS ^

function dcline = psse_convert_hvdc(dc, bus)

DESCRIPTION ^

PSSE_CONVERT_HVDC Convert HVDC data from PSS/E RAW to MATPOWER
   DCLINE = PSSE_CONVERT_HVDC(DC, BUS)

   Convert all two terminal HVDC line data read from a PSS/E
   RAW data file into MATPOWER format. Returns a dcline matrix for
   inclusion in a MATPOWER case struct.

   Inputs:
       DC  : matrix of raw two terminal HVDC line data returned by
             PSSE_READ in data.twodc.num
       BUS : MATPOWER bus matrix

   Output:
       DCLINE : a MATPOWER dcline matrix suitable for inclusion in
                a MATPOWER case struct.

   See also PSSE_CONVERT.

CROSS-REFERENCE INFORMATION ^

This function calls: This function is called by:

SUBFUNCTIONS ^

SOURCE CODE ^

0001 function dcline = psse_convert_hvdc(dc, bus)
0002 %PSSE_CONVERT_HVDC Convert HVDC data from PSS/E RAW to MATPOWER
0003 %   DCLINE = PSSE_CONVERT_HVDC(DC, BUS)
0004 %
0005 %   Convert all two terminal HVDC line data read from a PSS/E
0006 %   RAW data file into MATPOWER format. Returns a dcline matrix for
0007 %   inclusion in a MATPOWER case struct.
0008 %
0009 %   Inputs:
0010 %       DC  : matrix of raw two terminal HVDC line data returned by
0011 %             PSSE_READ in data.twodc.num
0012 %       BUS : MATPOWER bus matrix
0013 %
0014 %   Output:
0015 %       DCLINE : a MATPOWER dcline matrix suitable for inclusion in
0016 %                a MATPOWER case struct.
0017 %
0018 %   See also PSSE_CONVERT.
0019 
0020 %   MATPOWER
0021 %   Copyright (c) 2014-2016, Power Systems Engineering Research Center (PSERC)
0022 %   by Yujia Zhu, PSERC ASU
0023 %   and Ray Zimmerman, PSERC Cornell
0024 %   Based on mpdcin.m and mpqhvdccal.m, written by:
0025 %       Yujia Zhu, Jan 2014, yzhu54@asu.edu.
0026 %
0027 %   This file is part of MATPOWER.
0028 %   Covered by the 3-clause BSD License (see LICENSE file for details).
0029 %   See https://matpower.org for more info.
0030 
0031 %% define named indices into bus, gen, branch matrices
0032 [PQ, PV, REF, NONE, BUS_I, BUS_TYPE, PD, QD, GS, BS, BUS_AREA, VM, ...
0033     VA, BASE_KV, ZONE, VMAX, VMIN, LAM_P, LAM_Q, MU_VMAX, MU_VMIN] = idx_bus;
0034 c = idx_dcline;
0035 
0036 nb = size(bus, 1);
0037 ndc = size(dc, 1);
0038 e2i = sparse(bus(:, BUS_I), ones(nb, 1), 1:nb, max(bus(:, BUS_I)), 1);
0039 if ~ndc
0040     dcline = [];
0041     return;
0042 end
0043 
0044 %% extract data
0045 MDC = dc(:,2); % Control mode
0046 SETVL = dc(:,4); % depend on control mode: current or power demand
0047 VSCHD = dc(:,5); % scheduled compounded dc voltage
0048 ANMXR = dc(:,15); % nominal maximum rectifier firing angle
0049 ANMNR = dc(:,16); % nominal minimum rectifier firing angle
0050 GAMMX = dc(:,32); % nominal maximum inverter firing angle
0051 GAMMN = dc(:,33); % nominal minimum inverter firing angle
0052 SETVL = abs(SETVL);
0053 % Convert the voltage on rectifier side and inverter side
0054 % The value is calculated as basekV/VSCHD
0055 % basekV is the bus base voltage, VSCHD is the scheduled compounded
0056 % voltage
0057 dcline = zeros(ndc, c.LOSS1); % initiate the hvdc data format
0058 indr = dc(:,13); % rectifier end bus number
0059 indi = dc(:,30); % inverter end bus number
0060 dcind = [indr indi]; 
0061 % bus nominal voltage
0062 Vr = bus(e2i(indr), VM);
0063 Vi = bus(e2i(indi), VM);
0064 %% Calculate the real power input at the from end
0065 PMW = zeros(ndc, 1);
0066 for i = 1:ndc
0067     if MDC(i) == 1
0068         PMW(i) = SETVL(i); % SETVL is the desired real power demand
0069     elseif MDC(i) == 2;
0070         PMW(i) = SETVL(i)*VSCHD(i)/1000; % SETVL is the current in amps (need devide 1000 to convert to MW)
0071     else PMW(i) = 0;
0072     end
0073 end
0074 %% calculate reactive power limits
0075 [Qrmin,Qrmax] = psse_convert_hvdc_Qlims(ANMXR,ANMNR,PMW);    %% rectifier end
0076 [Qimin,Qimax] = psse_convert_hvdc_Qlims(GAMMX,GAMMN,PMW);    %% inverter end
0077 %% calculate the loss coefficient (Only consider the l1)
0078 % l1 = P'.*RDC;
0079 
0080 %% conclude all info
0081 status = ones(ndc, 1);
0082 status(MDC==0) = 0;     %% set status of blocked HVDC lines to zero
0083 % dcline(:,[1 2 3 4 5 8 9 10 11 12 13 14 15]) = [indr,indi,status,PMW, PMW, Vr, Vi,0.85*PMW, 1.15*PMW, Qrmin, Qrmax, Qimin, Qimax];
0084 dcline(:, [c.F_BUS c.T_BUS c.BR_STATUS c.PF c.PT c.VF c.VT ...
0085             c.PMIN c.PMAX c.QMINF c.QMAXF c.QMINT c.QMAXT]) = ...
0086     [indr indi status PMW PMW Vr Vi 0.85*PMW 1.15*PMW Qrmin Qrmax Qimin Qimax];
0087 
0088 
0089 function [Qmin, Qmax] = psse_convert_hvdc_Qlims(alphamax,alphamin,P)
0090 %PSSE_CONVERT_HVDC_QLIMS calculate HVDC line reactive power limits
0091 %
0092 %   [Qmin, Qmax] = psse_convert_hvdc_Qlims(alphamax,alphamin,P)
0093 %
0094 % Inputs:
0095 %       alphamax :  maximum firing angle
0096 %       alphamin :  minimum steady-state rectifier firing angle
0097 %       P :         real power demand
0098 % Outputs:
0099 %       Qmin :  lower limit of reactive power
0100 %       Qmax :  upper limit of reactive power
0101 %
0102 % Note:
0103 %   This function calculates the reactive power at the rectifier or inverter
0104 %   end. It is assumed the maximum overlap angle is 60 degree (see
0105 %   Kimbark's book). The maximum reactive power is calculated with the
0106 %   power factor:
0107 %       pf = acosd(0.5*(cosd(alphamax(i))+cosd(60))),
0108 %   where, 60 is the maximum delta angle.
0109 
0110 len = length(alphamax);
0111 phi = zeros(size(alphamax));
0112 Qmin = phi;
0113 Qmax = phi;
0114 for i = 1:len
0115     %% minimum reactive power calculated under assumption of no overlap angle
0116     %% i.e. power factor equals to tan(alpha)
0117     Qmin(i) = P(i)*tand(alphamin(i));
0118 
0119     %% maximum reactive power calculated when overlap angle reaches max
0120     %% value (60 deg). I.e.
0121     %%      cos(phi) = 1/2*(cos(alpha)+cos(delta))
0122     %%      Q = P*tan(phi)
0123     phi(i) = acosd(0.5*(cosd(alphamax(i))+cosd(60)));
0124     Qmax(i) = P(i)*tand(phi(i));
0125     if Qmin(i)<0
0126         Qmin(i) = -Qmin(i);
0127     end
0128     if Qmax(i)<0
0129         Qmax(i) = -Qmax(i);
0130     end
0131 end

Generated on Fri 09-Oct-2020 11:21:31 by m2html © 2005