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Abstract — This paper presents a novel power flow for-
mulation and an effective solution method for general
unbalanced radial distribution systems. Comprehensive
models are considered including lines, switches, trans-
formers, shunt capacitors, cogenerators, and several types
of loads. A new problem formulation of three-phase distri-
bution power flow equations taking into account the radial
structure of the distribution network is presented. A dis-
tinguishing feature of the new problem formulation is that
it significantly reduces the number of power flow equa-
tions, as compared with the conventional formulation. The
numerical properties as well as the structural properties
of distribution systems are exploited resulting in a fast
decoupled solution algorithm. The proposed solution algo-
rithm is evaluated on three-phase unbalanced 292-bus and
394-bus test systems with very promising results.

Keywords — power flow, load flow, radial network, dis-
tribution system, fast decoupled

INTRODUCTION

Load flow is a very important and fundamental tool for
the analysis of any power system and is used in the opera-
tional as well as planning stages. Certain applications,
particularly in distribution automation and optimization
of a power system, require repeated load flow solutions. In
these applications it is very important to solve the load
flow problem as efficiently as possible. Since the invention
and widespread use of digital computers, beginning in the
1950’s and 1960’s, many methods for solving the load flow
problem have been developed [1]. Most of the methods
have “grown up” around transmission systems and, over
the years, variations of the Newton method such as the
fast decoupled method [2], have become the most widely
used.

Unfortunately, the assumptions necessary for the sim-
plifications used in the standard fast decoupled Newton
method often are not valid in distribution systems. In par-
ticular,  ratios can be much higher. However, some
work has been done to attempt to overcome these difficul-
ties [3].

On the other hand, some of the methods based on the
general meshed topology of a typical transmission system

R X⁄

are also applicable to distribution systems which typically
have a radial or tree structure. Specifically, we will com-
pare the proposed method to the standard Newton method
[4], and the implicit Zbus Gauss method [5, 6]. These meth-
ods do not explicitly exploit the radial structure of the sys-
tem and therefore require the solution of a set of equations
whose size is of the order of the number of buses.

Our goal was to develop a formulation and solution
algorithm for solving load flow in large three-phase unbal-
anced systems which exploits the radial topological struc-
ture to reduce the number of equations and unknowns and
the numerical structure  to further reduce computation as
in the fast decoupled methods for transmission systems.

Some algorithms specific to radial systems have been
presented in [7]-[13]. These methods are all based on the
concept of doing backward and/or forward sweeps of a lad-
der network. In [7], the backward sweep involves the com-
putation of a driving point impedance equivalent at each
bus and the forward sweep is used to update voltages and
currents. The method proposed in [8] updates voltages and
currents during the backward sweep and the forward
sweep is a direct voltage correction. Various combinations
of voltage, current, and power flow updates are used in the
backward and forward sweeps of [9]-[14]. A fast decoupled
Newton update, similar to the one proposed in this paper,
was used for the backward sweep in [13].

In this paper we propose a new problem formulation
and solution algorithm which has a flavor of several of the
above methods. It is probably most closely related to the
methods presented in [9] and [13]. Our numerical results
also include a comparison with the back/forward sweep
approach of [9].

Basic Concept

Our approach is based on the fact that, given the volt-
age and current at one end of a distribution feeder and the
currents injected into each sub-lateral, it is possible to
compute all voltages and currents in the rest of the feeder.
Since the current at the end of the feeder is zero, the end
voltage can be taken as the unknown. And since the volt-
age at the source is specified we have a boundary condition
we can use to compute a voltage mismatch.

Exploring the numerical characteristics of a distribu-
tion line, we can make decoupling approximations to the
Jacobian used to update the unknown end voltages. This
results in a very fast Newton-like solution to a reduced set
of load flow equations.

For comparison, this fast decoupled algorithm was
implemented along with the standard Newton method, the
implicit Zbus Gauss method, and the back/forward sweep
method of [9]. Each method was evaluated and compared
on a 292-bus and a 394-bus test system.
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BUS & LATERAL INDEXING

In most typical load flow formulations, a set of equa-
tions and unknowns is associated with each bus in the net-
work and these equations and unknowns are organized by
a particular bus ordering. Due to the radial structure of
the systems under consideration, the number of equations
and variables can be reduced so that each set of equations
and unknowns corresponds to an entire lateral instead of
an individual bus. Our formulation therefore calls for an
appropriate lateral indexing to order these equations and
variables.

A radial system can be thought of as a main feeder with
laterals. These laterals may also have sub-laterals, which
themselves may have sub-laterals, etc. So first we define
the level of lateral i as the number of laterals which need
to be traversed to go from the end of lateral i to the source.
For example, the main feeder would be level 1, its sub-lat-
erals would be level 2, their sub-laterals level 3, etc.

The laterals within level l are indexed according to the
order visited during a depth-first traversal of the network.
Each lateral can be uniquely identified by an ordered pair

 where l is the lateral level and m is the lateral
index within level l.

Buses are also indexed within each lateral starting
with the first bus on the lateral, so that each bus is
uniquely identified by an ordered triple  where n
is the bus index. So  refers to the nth bus on the
mth level l lateral. The source is given an index of

. Figure 1 shows an example of this indexing
scheme on a sample 63-bus system. The boxed numbers

Figure 1  Example of Bus & Lateral Indexing
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show the reverse breadth-first (RBF) ordering of the later-
als found by sorting the lateral indices in reverse order,
first by level, then by lateral index.

We will also use the following shorthand notation when
i is an ordered pair referring to a lateral and k is an
ordered triple referring to a bus. Lateral  refers to the
parent of lateral i, and bus  refers to bus k’s parent
bus. Bus  may also be used to refer to the bus follow-
ing bus k on the same lateral. This notation is used in
indexing voltages, currents, impedances, etc.

SYSTEM MODELING

For the purposes of power flow studies, we model a
radial distribution system as a network of buses connected
by distribution lines, switches, or transformers to a volt-
age specified source bus. Each bus may also have a corre-
sponding load, shunt capacitor, and/or cogenerator
connected to it. The model can be represented by a radial
interconnection of copies of the basic building block shown
in Figure 2. The dotted lines from the cogenerator, shunt
capacitor, and load to ground are to indicate that these ele-
ments may be connected in an ungrounded delta-configu-
ration. Since a given branch may be single-phase, two-
phase, or three-phase, each of the labeled quantities is
respectively a scalar, 2 x 1, or 3 x 1 complex vector. For the
simplicity of presentation we will occasionally assume
everything is three-phase, although both single and two-
phase laterals are handled by our program.

One of the key concepts behind our formulation is that
the voltage and current at one bus can be expressed as a
function of the voltage and current at the next bus. If we
let

(1)

we can write the branch update function as

(2)

where  is a 12 x 1 vector containing the real and imagi-
nary parts of the voltages and currents at bus k. The func-

Figure 2  Basic Building Block
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tion  is determined by the sub-laterals attached at bus
k as well as the models for distribution lines, switches,
transformers, loads, shunt capacitors, and cogenerators.

From  we can compute the currents injected by the
loads, shunt capacitors, and cogenerators from (4)-(8),
according to the models presented below. Given  and
the currents  injected into sub-laterals branching off
from bus k, we apply KCL at bus k to give

(3)

where  is the set of buses adjacent to bus k on sub-lat-
erals.

So for each bus k we can express the voltage and cur-
rent at bus  as a function of the voltage and current
at bus k in the form of (2) by using (3) and the appropriate
equations from Table I.

Load Model

The load model used is a general model which allows
each load to be either wye-connected or delta-connected
and either constant impedance, constant current, or con-
stant complex power. For the wye-connected case the
injected currents can be computed as shown in (4)-(6). The
bar denotes a constant value and the division in (4) and (6)
is element-wise. Injected currents for delta-connected
loads are computed by taking the differences of the appro-
priate elements in (4)-(6). This model could easily be gen-
eralized to be a linear combination of all of the above
types.

Shunt Capacitor Model

Shunt capacitors are modeled as wye-connected or
delta-connected constant admittance. The injected current
as a function of voltage for the grounded wye-connected
case is given in (7) where the multiplication is element-
wise.

Cogenerator Model

Cogenerators are modeled as wye-connected or delta-
connected constant complex power devices. The injected
current given by (8) is therefore in the same form as (6).

Line Model

The line model used is the standard pi-model. The
impedance of distribution line k is represented as a series
impedance , and the line charging effects are divided
between the two shunt arms, each with an admittance of

. The impedance  and the admittance  are
both n x n complex matrices, where n is the number of
phases in the line. The voltages and currents at the send-
ing end of the line are computed via (9) and (10).

Switch Model

Sectionalizing switches are modeled as branches with
zero impedance. The corresponding voltage and current
relationships are given by (11) and (12).

Transformer Model

Three-phase transformers are modeled by the admit-
tance matrix equivalent proposed in [15] for grounded-wye
to grounded-wye connections.

gk
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From (15), we can solve for the voltage and current at the
primary given the voltage and current at the secondary
resulting in (13) and (14).

PROBLEM FORMULATION

Here we present a new load flow formulation with a
reduced number of equations and unknowns. The load flow
problem is typically formulated as a set of non-linear
power mismatch equations as functions of the bus volt-
ages. The number of equations and unknowns in an n-bus
all three-phase system is , since the source is the
only voltage specified bus in a distribution system. Our
formulation reduces the number of equations and
unknowns to 6 times the number of laterals in the system.
To illustrate our formulation we start with a system con-
sisting of a single main feeder.

Single Feeder

Given the voltage and current at either end of the
feeder we can compute the remaining voltages and cur-
rents. Note also that throughout this formulation currents
could be replaced by complex power flows as in [13]. We
have two boundary conditions, the current  at the
end of the feeder is equal to zero, and the voltage  at
the source is a specified constant . So we can take

Table I   Update Equations

Element Update Equation
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constant PQ (6)

shunt capacitor (7)

cogenerator (8)
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(14)

Figure 3  Single Feeder
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either the current  at the source, or the voltage  at
the end of the feeder to be the unknown. Unlike , an ini-
tial guess to  is readily available without computation
(balanced 1 p.u.), so we choose , which we refer to as
the end voltage, as the independent variable.

Using (2) and the fact that  we can compute
the source voltage (and current) as a function of .
Starting with  we apply the appropriate branch update
function  consecutively until we reach .

(16)

We will denote the voltage part of the composite func-
tion  as . At the solution the mis-
match between the specified source voltage  and the
computed source voltage  must be zero. The power
flow equations can therefore be written as

(17)

Since the voltage V is a complex 3 x 1 vector this equation
is equivalent to 6 real equations in 6 real unknowns inde-
pendent of the number of buses on the feeder.

The Jacobian of f can be expressed using the chain rule
and the branch Jacobians. The branch Jacobian  for
bus k’s incoming branch is the Jacobian of equation (2)

(18)

We express the system Jacobian for this simple single
feeder case as

(19)

where the first term in the product is just the top half of
 and the last term is the left half of .

General Radial Structure

To generalize this formulation to handle an arbitrary
radial structure we first note that the voltage at the begin-
ning of any lateral can be computed as a function of the
end voltage if the currents injected into each sub-lateral
are given. In a system with L levels, the level L laterals
have no sub-laterals and can therefore be computed first.
After all level L laterals have been computed, the currents
injected into the sub-laterals of each level  lateral are
known, hence the level  laterals can be computed.
Next the level  laterals are computed, and so on,
until the main feeder has been computed. This is the
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reverse breadth-first (RBF) ordering illustrated in
Figure 1.

To complete the voltage mismatch calculation for each
lateral we take the difference of the two voltages computed
for each branching bus. Suppose lateral  has a
level  sub-lateral i branching off at bus k, where i is
the ordered pair  and k is the triple .
The mismatch for lateral i is taken as the difference
between  as computed from the end voltage of sub-lat-
eral i, and  as computed from the end voltage of the
supplying lateral .

For lateral i starting at bus k we now have an equation
similar to (17), but with  being replaced by a vector x
containing the end voltages of all laterals.

(20)

The function  does not depend on all elements of x, but
only on the voltages of end buses supplied through bus k
since they affect currents injected into the sub-laterals of
lateral i. This relationship will be seen more clearly in
Figure 5 when we look at the structure of the Jacobian. 

Putting these equations together in RBF order we can
express the new load flow equations compactly as

(21)

Note that  is no longer constant except when i is the
main feeder and k is the source bus, i.e. the last set of
equations when in RBF order.

Assuming we separate real and imaginary parts, for a
system with m laterals, (21) is a set of 6m non-linear equa-
tions in 6m real unknowns. This is also assuming that all
buses are three-phase; single and two-phase laterals
would reduce these numbers accordingly.

SOLUTION METHOD

The reduced set of load flow equations in (21) could be
solved by any of several iterative methods for finding zeros
of a set of general non-linear equations. The well-known
Newton method proceeds as follows:

Newton Method

1. Choose an initial guess for the solution, .

2. Set .

3. Evaluate .

4. Stop if .

Figure 4  Mismatch Calculation
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5. Evaluate the Jacobian, .

6. Solve .

7. Let .

8. Let  and go to step 3.

As is typical in the Newton method, the majority of
computation time is spent in step 5 evaluating the Jaco-
bian, and step 6 solving for the update step. Any reason-
able approximation which results in fewer computations
in these two steps will greatly improve the speed of the
algorithm, barring an increase in the total number of iter-
ations.

First, we think of the Jacobian in terms of block ele-
ments corresponding to the laterals. The block element in
block row i and block column j is the sensitivity of the volt-
age mismatch at lateral i with respect to variations in the
end voltage of lateral j. Each block element of the system
Jacobian can be expressed, using the chain rule, as a prod-
uct of branch Jacobians along the path between the start
bus of lateral i and the end bus of lateral j.

Numerical Structure of Branch Jacobian

The branch Jacobian  of (18) relates the sensitivity
of voltages and currents at bus  to small variations in
the voltages and currents at bus k. For a three-phase
branch it is a 12 x 12 matrix. Due to the fact that for prac-
tical distribution lines the elements of the line impedance
matrix  and the line charging admittance  are small
with respect to voltage magnitudes, the branch Jacobian
can be approximated by the identity matrix. To derive an
analytical expression for each of the 144 terms of the
matrix and analyze them to determine which terms can be
neglected is obviously too tedious. So here we just give a
motivation for the approximation.

A small change in voltage at bus k produces a corre-
spondingly small change in the load, shunt, and cogenera-
tor currents at bus k, as well as the series current in
branch k. However, these currents are multiplied by the
line’s small impedance , making their effect on the volt-
age change at bus  negligible. So from (9) we see that,
neglecting the effects of the second term, a change in volt-
age at bus k produces nearly the same change in voltage at
bus . This accounts for the upper left block of  in
(18). Similarly, a small change in the current  affects
only  and will have a negligible effect on the voltage

 giving us approximately zero for the upper right
block of . Due to the small  we see that small
changes in  or  have very little effect on the first
term in (10), accounting for the lower two blocks of  in
(18).

Approximation of the branch Jacobian by the identity is
the equivalent of replacing loads, shunt capacitors, and
cogenerators by constant injected currents and neglecting
line charging and line impedance. The same approxima-
tion is used for sectionalizing switches. For transformer
sections, the upper left block of  is approximated by the
identity divided by the tap ratio, and the lower right block
by the identity times the tap ratio. In other words the
transformer is approximated by its ideal equivalent. It is
important to note that these approximations are only for
simplifying the Jacobian used to compute the update step
in Newton’s method. They have no effect on the final solu-
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tion, which is still based on the detailed models described
in the section “SYSTEM MODELING”.

Numerical Structure of System Jacobian

Taking into account the numerical structure of the
branch Jacobians, we build up the system Jacobian via the
chain rule. This leads to the special structure, dependent
on the RBF ordering of the laterals, which is illustrated in
Figure 5 for the sample system from Figure 1.

Decoupled Algorithm

Since the nonzero blocks below the block diagonal are
nearly zero we can neglect them. By doing this we are
essentially saying that the mismatch for lateral i is only
affected by the end voltage of lateral i and the end voltage
of lateral i’s parent.

This approximation greatly speeds up the solution of
the update step in step 6 of the Newton algorithm. The
matrix is now more sparse, but more importantly it is
block-upper triangular and the update step can therefore
be solved by block back-substitution.

Fast Decoupled Algorithm

In the decoupled algorithm, the evaluation of the Jaco-
bian in step 5 is still quite complex and expensive to the
extent of being impractical. Further approximations can
be made by replacing the near identity blocks by an exact
identity matrix and the near negative identity blocks by
exactly negative identity. The exact identity blocks are
actually divided by the appropriate tap ratios for blocks
corresponding to laterals which include transformers.

The “Jacobian” is now a constant upper triangular
matrix corresponding to the approximations made to the
branch Jacobians as mentioned above. This means that

Figure 5  Structure of System Jacobian
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step 5 has been essentially eliminated and step 6 is now a
simple back-substitution. In fact, it is not even necessary
to explicitly form and store the “Jacobian” since each row
has a “1” on the diagonal and a “-1” in the column corre-
sponding to the appropriate phase of the parent lateral.
Here again, a “1” is replaced by the reciprocal of a corre-
sponding transformer tap ratio where appropriate.

RESULTS

The fast decoupled method described above was imple-
mented in Matlab 4 along with the traditional formulation
of the Newton [4] and implicit Zbus Gauss methods [5] and
a back/forward sweep method [9]. The implicit Zbus Gauss
method actually uses an optimally ordered, factored Ybus
instead of forming Zbus explicitly.

The test systems are 292-bus and 394-bus unbalanced
systems, each with 6 distribution transformers. According
to our formulation, the first system has a total of 85 later-
als and the second has 108 laterals, each including some
single and 2-phase laterals. Three of the algorithms,
excluding the back/forward sweep, require the solution of
a large sparse system of linear equations. In the Newton
and fast decoupled methods the resulting matrix is a Jaco-
bian and in the implicit Zbus Gauss method it is Ybus.
Table II shows the sizes and types of these matrices for our
two test systems. If all buses were three-phase we would
expect the dimension to be approximately 6n for Newton,
3n for implicit Zbus Gauss, and 6l for fast decoupled, where
n is the number of buses and l is the number of laterals.
Since there are some single and 2-phase buses the num-
bers are slightly smaller than these. Notice that in the fast
decoupled method the matrix is triangular, that is, already
in factored form.  Unlike the first two methods, the pro-
posed algorithm does not require the formation of Ybus or
the factoring of a large matrix.

In the case of the 394-bus system, the number of real
equations and unknowns, and therefore the size of the
Jacobian, was reduced from 1996 for the traditional New-
ton formulation to 560 for the fast decoupled method. This
decrease in size was accompanied by a correspondingly
large decrease in the computation required to solve the
load flow from a flat start. Figure 6 shows the computa-
tional complexity for each of the four methods in mega-
flops. These figures are based on the total number of
floating point operations as reported by Matlab and should
be indicative of run-time for the algorithms in compiled
languages such as C or Fortran.

Our results show that the fast decoupled method is also
more efficient than the back/forward sweep method based

ano factoring necessary

Table II   Sparse Matrix to be Factored

Algorithm
Type & Structure 

of Matrix

Dimension

292 bus 394 bus

Newton real, general 1472 1996

Implicit Zbus Gauss complex, symmetric 736 998

Back/Forward Sweep no matrix necessary

Fast-Decoupled real, triangulara 426 560

on [9]. The difference is in the amount of computation nec-
essary to update the end voltages. For the back/forward
sweep approach this requires a full forward sweep calcu-
lating the voltage drops in each branch. In the fast decou-
pled approach it is a direct computation from the
triangular “Jacobian”. Since the function evaluation in the
proposed algorithm is equivalent to a backward sweep, we
expect each iteration to require less computation.

In our tests, the Newton method demonstrated qua-
dratic convergence as expected, while the other three
methods converged linearly as shown in Figure 7.

CONCLUSIONS & FUTURE WORK

In this paper we have exploited the radial structure
(physical property) and the decoupling numerical property
of a distribution system to develop a fast decoupled New-
ton method for solving unbalanced distribution load flow.
It involves a reduced set of equations and unknowns pro-
portional to the number of laterals in the network as
opposed to the number of buses. Due to the reduced num-
ber of equations and the fact that the Jacobian is approxi-
mated by a constant triangular matrix, it is significantly
faster than the implicit Zbus Gauss method or the tradi-
tional Newton method based on Ybus. Since each function
evaluation involves updating each bus voltage and current

Figure 6  Computational Complexity

Figure 7  Convergence for 394-bus System
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and the “Jacobian” is triangular the computation in each
iteration is proportional to n, making it suitable for very
large radial systems. It is also shown to be more efficient
than the back/forward sweep method of [9], due to the sav-
ings during the update of the end voltages.

The load flow method proposed in this paper could pos-
sibly be improved further in several ways. As described
here, it is limited to radial systems with one voltage-regu-
lated bus treated as the source. The authors believe that it
could be generalized to handle weakly meshed systems
using a compensation method similar to those presented
in [10, 12, 14]. These approaches are based on choosing
breakpoints to convert the system to a radial structure.
The network is then solved using a radial load flow algo-
rithm along with corrections to the breakpoint currents or
powers. These approaches also allow for PV buses, treated
as artificial breakpoints, making them suitable for weakly-
meshed transmission systems. Since the methods in [10,
12, 14] are based on back/forward sweep, improvements
might be possible by basing the radial network solver on
the fast decoupled method proposed in this paper.

It may also be possible to extend this formulation to
include distribution transformers of other connection
types such as the remainder of those presented in [15].
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